Cracknell AP. The propagation of ultrasound. In: Mott N, Noakes GR, editors. Ultrasonics. London: Wykeham Publication; 1980. p. 11–37.
Google Scholar
Cracknell AP. The attenuation of ultrasound. In: Mott N, Noakes GR, editors. Ultrasonics. London: Wykeham Publication; 1980. p. 38–56.
Google Scholar
Hensel K, Mienkina M, Schmitz G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med Biol. 2011;37:2105–15.
Article
PubMed
Google Scholar
Angle SR, Sena K, Sumner DR, Virdi AS. Osteogenic differentiation of rat bone marrow stromal cells by various intensities of low-intensity pulsed ultrasound. Ultrason. 2011;51:281–8.
Article
CAS
Google Scholar
Doan N, Reher P, Meghji S, Harris M. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg. 1999;57:409–19.
Article
CAS
PubMed
Google Scholar
Iwabuchi S, Ito M, Hata J, Chikanishi T, Azuma Y, Haro H. In vitro evaluation of low-intensity pulsed ultrasound in herniated disc resorption. Biomaterials. 2005;26:7104–14.
Article
CAS
PubMed
Google Scholar
Maddi A, Hai H, Ong S, Sharp L, Harris M, Meghji S. Long wave ultrasound may enhance bone regeneration by altering OPG/RANKL ratio in human osteoblast-like cells. Bone. 2006;39:283–8.
Article
CAS
PubMed
Google Scholar
Man J, Shelton RM, Cooper PR, Landini G, Scheven BA. Low intensity ultrasound stimulates osteoblast migration at different frequencies. J Bone Miner Metab. 2012;30:602–7.
Article
PubMed
Google Scholar
Man J, Shelton RM, Cooper PR, Scheven BA. Low-intensity low-frequency ultrasound promotes proliferation and differentiation of odontoblast-like cells. J Endod. 2012;38:608–13.
Article
PubMed
Google Scholar
Naruse K, Mikuni-Takagaki Y, Azuma Y, Ito M, Oota T, Kameyama K, et al. Anabolic response of mouse bone-marrow-derived stromal cell clone ST2 cells to low-intensity pulsed ultrasound. Biochem Biophys Res Commun. 2000;268:216–20.
Article
CAS
PubMed
Google Scholar
Reher P, Elbeshir EN, Harvey W, Meghji S, Harris M. The stimulation of bone formation in vitro by therapeutic ultrasound. Ultrasound Med Biol. 1997;23:1251–8.
Article
CAS
PubMed
Google Scholar
Saito M, Fujii K, Tanaka T, Soshi S. Effect of low- and high-intensity pulsed ultrasound on collagen post-translational modifications in MC3T3-E1 osteoblasts. Calcif Tissue Int. 2004;75:384–95.
Article
CAS
PubMed
Google Scholar
Samuels JA, Weingarten MS, Margolis DJ, Zubkov L, Sunny Y, Bawiec CR, et al. Low-frequency (<100 kHz), low-intensity (<100 mW/cm(2)) ultrasound to treat venous ulcers: a human study and in vitro experiments. J Acoust Soc Am. 2013;134:1541–7.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sant’Anna E, Leven RM, Virdi AS, Sumner DR. Effect of combined ultrasound and BMP-2 stimulation on rat bone marrow stromal cell gene expression. J Orthop Res. 2005;23:646–52.
Article
PubMed
Google Scholar
Sena K, Leven RM, Mazhar K, Sumner DR, Virdi AS. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol. 2005;31:703–8.
Article
PubMed
Google Scholar
Takayama T, Suzuki N, Ikeda K, Shimada T, Suzuki A, Maeno M, et al. Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci. 2007;80:965–71.
Article
CAS
PubMed
Google Scholar
Wei FY, Leung KS, Li G, Qin J, Chow SK, Huang S, et al. Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing. PLoS One. 2014;9:e106722.
Article
PubMed Central
PubMed
Google Scholar
Bashardoust Tajali S, Houghton P, MacDermid JC, Grewal R. Effects of low-intensity pulsed ultrasound therapy on fracture healing: a systematic review and meta-analysis. Am J Phys Med Rehabil. 2012;91:349–67.
Article
PubMed
Google Scholar
Hannemann PF, Mommers EH, Schots JP, Brink PR, Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2014;134:1093–106.
Article
CAS
PubMed
Google Scholar
Tanaka E, Kuroda S, Horiuchi A, Tabata A, El-Bialy T. Low-intensity pulsed ultrasound in dentofacial tissue engineering. Ann Biomed Eng. 2015. doi:10.1007/s10439-015-1274-y.
Reher P, Doan N, Bradnock B, Meghji S, Harris M. Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines. Eur J Cancer. 1998;34:1962–8.
Article
CAS
PubMed
Google Scholar
Reher P, Harris M, Whiteman M, Hai H, Meghji S. Ultrasound stimulates nitric oxide and prostaglandin E-2 production by human osteoblasts. Bone. 2002;31:236–41.
Article
CAS
PubMed
Google Scholar
Scheven BA, Man J, Millard JL, Cooper PR, Lea SC, Walmsley AD, et al. VEGF and odontoblast-like cells: stimulation by low frequency ultrasound. Arch Oral Biol. 2009;54:185–91.
Article
CAS
PubMed
Google Scholar
Scheven BA, Shelton RM, Cooper PR, Walmsley AD, Smith AJ. Therapeutic ultrasound for dental tissue repair. Med Hypotheses. 2009;73:591–3.
Article
CAS
PubMed
Google Scholar
Ghorayeb SR, Bertoncini CA, Hinders MK. Ultrasonography in dentistry. IEEE Trans Ultrason Ferroelec Freq Contr. 2008;55:1256–66.
Article
Google Scholar
Ghorayeb SR, Patel U, Walmsley D, Scheven B. Biophysical characterization of low-frequency ultrasound interaction with dental pulp stem cells. J Therapeutic Ultrasound. 2013. doi:10.1186/2050-5736-1-12.
Fung CH, Cheung WH, Pounder NM, Harrison A, Leung KS. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. Ultrasonics. 2014;54:1358–65.
Article
CAS
PubMed
Google Scholar
Dyson M. Non-thermal cellular effects of ultrasound. Br J Cancer Suppl. 1982;5:165–71.
CAS
PubMed Central
PubMed
Google Scholar
Furusawa Y, Hassan MA, Zhao QL, Ogawa R, Tabuchi Y, Kondo T. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason Sonochem. 2014;21:2061–8.
Article
CAS
PubMed
Google Scholar
Johns LD. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. J Athl Train. 2002;37:293–9.
PubMed Central
PubMed
Google Scholar
Webster DF, Pond JB, Dyson M, Harvey W. The role of cavitation in the in vitro stimulation of protein synthesis in human fibroblasts by ultrasound. Ultrasound Med Biol. 1978;4:343–51.
Article
CAS
PubMed
Google Scholar
Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–16.
Article
CAS
PubMed
Google Scholar
Scheven BA, Millard JL, Cooper PR, Lea SC, Walmsley AD, Smith AJ. Short-term in vitro effects of low frequency ultrasound on odontoblast-like cells. Ultrason Med Biol. 2007;33:1475–82.
Article
Google Scholar
Hanks CT, Fang D, Sun Z, Edwards CA, Butler WT. Dentin-Specific Proteins in Mdpc-23 Cell Line. Eur J Oral Sci. 1998;106:260–6.
Article
CAS
PubMed
Google Scholar
Al-Daghreer S, Doschak M, Sloan AJ, Major PW, Heo G, Scurtescu C, et al. Long term effect of low intensity pulsed ultrasound on a human tooth slice organ culture. Arch Oral Biol. 2012;57:760–8.
Article
PubMed
Google Scholar
Hu B, Zhang Y, Zhou J, Li J, Deng F, Wang Z, et al. Low-intensity pulsed ultrasound stimulation facilitates osteogenic differentiation of human periodontal ligament cells. PLoS One. 2014. doi:10.1371/journal.pone.0095168.
Nolte PA, Klein-Nulend J, Albers GHR, Marti RK, Semeins CM, Goei SW, et al. Low-intensity ultrasound stimulates endochondral ossification in vitro. J Orthop Res. 2001;19:301–7.
Article
CAS
PubMed
Google Scholar
ter Haar G, Shaw A, Pye S, Ward B, Bottomley F, Nolan R, et al. Guidance on reporting ultrasound exposure conditions for bio-effects studies. Ultrasound Med Biol. 2011;37:177–83.
Article
PubMed
Google Scholar
Blay J, Price RB. Cellular inhibition produced by dental curing lights is a heating artefact. J Biomed Mater Res B Appl Biomater. 2010;93:367–74.
Article
PubMed
Google Scholar
Leskinen JJ, Olkku A, Mahonen A, Hynynen K. Nonuniform temperature rise in in vitro osteoblast ultrasound exposures with associated bioeffect. IEEE Trans Biomed Eng. 2014;61:920–7.
Article
PubMed
Google Scholar
Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93:384–98.
Article
PubMed
Google Scholar
Ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol. 2007;93:111–29.
Article
PubMed
Google Scholar
Wang SJ, Lewallen DG, Bolander ME, Chao EY, Ilstrup DM, Greenleaf JF. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res. 1994;12:40–7.
Article
CAS
PubMed
Google Scholar
Khan Y, Laurencin CT. Fracture repair with ultrasound: clinical and cell-based evaluation. J Bone Joint Surg Am. 2008;90:138–44.
Article
PubMed
Google Scholar
Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76:26–34.
CAS
PubMed
Google Scholar
Richard C, Lee HS, Guyomar D. Thermo-mechanical stress effect on 1–3 piezocomposite power transducer performance. Ultrason. 2004;42:417–24.
Article
CAS
Google Scholar
Nyborg WL. Physical principles of ultrasound. In: Fry FJ, editor. Ultrasound: its applications in medicine and biology. NY: Elsevier; 1978. p. 1–76.
Google Scholar