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Abstract

Background: The purpose of this study is to investigate whether changes could be detected in dynamic
contrast-enhanced (DCE) and intra-voxel incoherent motion (IVIM) MR parameters upon MR-guided high-intensity
focused ultrasound (MR-HIFU)-induced hyperthermia in a rabbit Vx2 tumor model.

Methods: Five Vx2 tumor-bearing New Zealand white rabbits were treated with hyperthermia using a clinical
MR-HIFU system. Data were acquired before and after hyperthermia. For the DCE analysis, the extended Tofts
model was used. For the IVIM analysis, a Bayesian approach was used. Maps were reconstructed of the DCE
parameters (K", kep, and v,,) and IVIM parameters (D, f,, and D,). Individual parameter histograms and
two-dimensional cross-correlation histograms were constructed to analyze changes in the parameters after
hyperthermia. Changes in median values were tested for statistical significance with the Mann-Whitney U test.

Results: The MR temperature measurements confirmed that mild hyperthermia (40 to 42 °C) was successfully
achieved in all rabbits. One rabbit died during treatment and was excluded from the analysis. In the remaining four
rabbits, an increase in D, was observed. In three rabbits, an increase in K" was observed, while in the other
rabbits, all three DCE parameter values decreased. Mixed changes were seen for v, and f,,.

Conclusions: Changes in DCE and IVIM parameters were detected after hyperthermia and were variable between
the rabbits. DCE- and IVIM-MRI may be promising tools to assess tumor responses to hyperthermia. Further research
in a larger number of subjects is necessary in order to assess their value for treatment response monitoring.
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Background

While MR-guided high-intensity focused ultrasound (MR-
HIFU) has been used for ablative treatments, the technol-
ogy also shows promise for the induction of local mild
hyperthermia. One of the physiological effects is the im-
provement of tumor oxygenation, which has been re-
ported to increase the effectiveness of radiotherapy [1, 2].
Other physiological effects are changes in blood flow and
vascular permeability, which could enhance local drug de-
livery of chemotherapeutic agents [3, 4]. Information
about tumor physiology is valuable since it is an important
determinant of treatment outcomes [5, 6]. Physiological
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responses of tumors to hyperthermia have been exten-
sively investigated in rodent models using invasive meas-
urement methods [7—13]. Tumors are more sensitive to
heating and stasis of the blood flow occurs at lower
hyperthermic temperatures as compared with normal tis-
sue [7, 8]. Changes in regional blood flow and permeabil-
ity after hyperthermia were reported to show both inter-
and intra-tumoral variations [7, 13]. The underlying
mechanisms are complex and depend on several factors,
e.g., the chemical microenvironment and tumor architec-
ture [7], which make it difficult to predict tumor responses
to hyperthermia. Noninvasive methods to map physio-
logical changes would therefore be useful for investigating
tumor responses to hyperthermia [14, 15].
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Dynamic contrast-enhanced (DCE) magnetic reson-
ance imaging (MRI) is a method widely used to map
quantitative perfusion and permeability parameters
[16, 17]. Dynamic T;-maps are acquired before, dur-
ing, and after the injection of a paramagnetic contrast
agent bolus. Contrast concentration-time curves are
derived from the dynamic 7 maps, and perfusion pa-
rameters can be extracted by fitting a physiological
model, such as the Tofts model [18, 19]. Many stud-
ies have reported on the potential of DCE-MRI as a
prediction tool for treatment response of tumors to
radiotherapy [20, 21], neo-adjuvant chemotherapy
[22-24], and neo-adjuvant chemoradiation [25-27].

Intra-voxel incoherent motion (IVIM) MRI is a
method that allows measurements of perfusion-related
parameters from diffusion-weighted MR data. The non-
Brownian motion of blood flowing through pseudo ran-
domly organized capillary networks is considered as in-
coherent motion. This generates a “pseudo diffusion”
effect and contributes to the diffusion-weighted MR sig-
nal. By using a bi-exponential description of the MR sig-
nal, parameters related to the wvascularity can be
extracted [28]. Although these parameters should be
interpreted carefully [29, 30], the vascular contribution
to measured IVIM parameters has recently been verified
in healthy volunteers [31]. Recent studies showed prom-
ising results using IVIM for the characterization of vari-
ous diseases of different organs, for example, cirrhotic
liver [32], pancreatic carcinoma [33], locally advanced
breast cancer [34], salivary gland tumors [35], brain
pathologies [36], and renal tumors [37].

In this study, we investigated the potential of DCE-
and IVIM-MRI to detect changes induced by hyperther-
mia in rabbits with Vx2 tumors, using the extended
Tofts DCE-MRI model and a Bayesian approach for
IVIM analysis. To this end, a clinical MR-HIFU system
was used, which allows of noninvasive local hyperther-
mia in small animals [38—42].

Methods
Animal handling and Vx2 tumors
All experiments were approved by the University Animal
Experiments Committee and were performed in agree-
ment with The Netherlands Experiments on Animals
Act (1977) and the European Convention guidelines (86/
609/EC). Five female New Zealand white rabbits (2.5—
3.5 kg, Charles River, France) were housed in pairs and
were provided with food and ad [libitum water. Vx2
tumor pieces were retrieved from donor rabbits and im-
planted intramuscularly in the left hind limb. The tu-
mors grew to a volume of 10 cm® in about 3 weeks, after
which the imaging experiment was performed.

The rabbits were initially anesthetized with a subcuta-
neous injection of dexmedetomidine (0.125 mg/kg,
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Dexdomitor, Jansen Pharmaceutica N.V., Beerse, The
Netherlands) and ketamine (15 mg/kg, Narketan 10,
Vétoquinol S.A., Lure Cedex, France). The tumor-
bearing hind limb was shaved, depilated, and covered
with ultrasound gel for acoustic coupling. To prevent
undesired leg movement during HIFU exposure, a sciatic
nerve block was performed (bupivacaine 2 mg/kg).
Then, a fluoroptic temperature probe (Luxtron, Santa
Clara, CA) was placed in the muscle tissue adjacent to
the tumor to allow measurements of the baseline
temperature as is used for the relative MR thermometry.

A catheter (Abbocath’-T LV. Catheter 22 gx 1.257
Hospira Inc., Lake Forest, IL) was placed in the marginal
ear vein and was connected to a Luer-lock 3-way valve,
providing two inputs. One input was used for the intra-
venous maintenance anesthesia (one third of the initial
dose per hour), which was provided using a pressure
pump system up to 5 h after the initiation of anesthesia.
The other input was available for intravenous injection
of the MR contrast agent gadobutrol (GadoVist,
0.1 mmol/kg, Gadovist, Bayer Pharma). After the experi-
ment, the rabbits were terminated with an overdose of
sodium pentobarbital injected intravenously.

Experimental setup

A clinical MR-HIFU therapy system was used (Sonalleve
V2, Philips Healthcare, Vantaa, Finland) integrated into a
clinical 1.5T MRI scanner (Achieva, Philips Healthcare,
Best, The Netherlands). An in-house developed animal
holder as previously described by Wijlemans et al. [43]
was used, which consisted of an open polymethylmetha-
crylate tank with an acoustic window in the bottom. A
schematic overview of the setup is shown in Fig. 1la. The
tank was filled with heated water up to the tumor-
bearing leg, to enable acoustic coupling and to achieve a
baseline  temperature similar to human body
temperature (37 °C). A heating blanket was placed on
top of the rabbit to keep the baseline temperature stable.

MR imaging
A four-channel RF receiver coil integrated into the MR-
HIFU tabletop was used, together with a flat 16-channel
array coil, which was placed on top of the heating blan-
ket (Fig. 1a).

To plan the position of the HIFU focus, an anatom-
ical T,-weighted 3D turbo spin-echo (TSE) sequence
was used with the following scan parameter settings:
echo time (TE)=254 ms, repetition time (TR)=
1000 ms, flip angle (FA) =90°, TSE factor = 21, acqui-
sition bandwidth (BW) =245.5 Hz, voxel size =2 x 2 x
2 mm?, field of view (FOV)=250x 250 x 126 mm?,
number of signal averages (NSA)=2. Figure 1b, ¢
shows examples of treatment planning on recon-
structed sagittal and coronal images.
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Fig. 1 Experimental setup. A schematic overview of the experimental setup is shown in (a). The animal holder was placed with its acoustic
window above the HIFU window; degassed water was used for acoustic coupling. The shaved tumor-bearing leg was positioned above the
acoustic window, and a fluoroptic temperature probe was inserted in the tumor-bearing leg, in the far-field of the HIFU beam. The tank was filled
with warm water (~37 °C) up to the tumor-bearing leg, and an absorber was placed between the legs. On top of the rabbit, a heating blanket
and a flat 16-channel array coil was placed. In (b, ), examples of the treatment planning are shown on reconstructed sagittal and coronal images

The MR thermometry scan used was a multi-slice
gradient-echo planar imaging (EPI) pulse sequence with
binomial water-selective RF excitation. One stack of
three coronal slices and one sagittal slice were acquired,
of which the centers were aligned with the HIFU focus.
A saturation slab was used to suppress signal from the
water tank. The scan parameter settings were as follows:
TE =20 ms, TR =44 ms, FA =20°, BW =39.5 Hz, pixel
size=2.5x 2.5 mm? slice thickness=7 mm, FOV =
250 x 250 mm? NSA =2, EPI factor = 11, and dynamic
scan duration = 3.9 s. Temperatures changes were calcu-
lated on the fly using the proton resonance frequency
shift method [44, 45] and added to the baseline
temperature measured with the fluoroptic probe in order
to reconstruct temperature images.

The baseline 77 map, required for DCE-MRI analyses,
was obtained from variable flip angle (VFA) images ac-
quired prior to contrast agent injection. The DCE-MR
images and VFA images were acquired before and after
hyperthermia and were orientated parallel to the tumor-
bearing leg. The VFA images were acquired with a 3D
spoiled gradient-echo: TE =14 ms, TR=5 ms, FA=5°,

10°, and 15°, BW =192 Hz, voxel size=12x1.5x
2 mm®, FOV =300 x 150 x 40 mm®, and NSA =2. For
the DCE-MR images, the same scan sequence was used
with dynamic keyhole settings [46], using the last scan
for the high spatial frequency data, keyhole percentage =
25 %, keyhole measurements = 2, dynamic reference scan
duration = 13.1 s, dynamic keyhole scan duration = 3.3 s,
total scan duration = 5 min, 47 s, and FA = 15°. MR con-
trast agent was injected between 15 and 20 s after start-
ing the dynamic DCE scan. The DCE-MRI scan was
acquired on average 10 min (range 6.5 to 17.5 min) after
the end of hyperthermia.

For IVIM-MRI, multi-slice diffusion-weighted single-
shot spin-echo EPI images were acquired before and
after hyperthermia. The orientation of the slices was par-
allel to the tumor-bearing leg and 10 b values were used.
The scan parameter settings were as follows: TE =
67 ms, TR = 2500 ms, FA =90°, BW = 15.7 Hz, pixel size
=2x2 mm? slice thickness=3 mm, FOV =140 x
179 mm?, number of slices = 12, NSA =6, and b = 800,
600, 400, 200, 150, 100, 75, 50, 25, 0 s/mm” A
frequency-selective adiabatic inversion pulse was used
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for fat suppression, with a delay time of 90 ms. The
IVIM-MRI scan was acquired on average 35 min (range
26 to 43 min) after the end of hyperthermia.

MR-HIFU-induced mild hyperthermia

Mild hyperthermia (40 to 42 °C) was induced locally in
all five rabbits using the clinical MR-HIFU therapy sys-
tem described earlier. Sonications were performed with
60 W acoustic power at an operating frequency of
1.2 MHz, and the acoustical energy was delivered along
concentric circular sub-trajectories of 4 and 8 mm diam-
eter by electronically steering the focus, the so-called
HIFU cell [47]. Mild hyperthermia was achieved by the
binary feedback-loop described by Partanen et al. [48],
which uses the temperature measurements provided by
the MR thermometry. After initial heating to mild
hyperthermic temperatures, hyperthermia was main-
tained by re-sonicating the sub-trajectories using a bin-
ary feedback-loop. In this study, the binary feedback-
loop was slightly adapted: re-sonication was done with
80 % of the initial acoustical power instead of 50 %.

The hyperthermia protocol consisted of three hyper-
thermia blocks of 10 min, separated by periods of cool-
ing. Each subsequent hyperthermia sonication started
when the temperature, measured by the fluoroptic
temperature probe, had decreased to the baseline
temperature measured prior to heating. A hyperthermia
block was considered unsuccessful and was redone after
cooling down when the duration of the hyperthermia
block was less than half of the intended duration, for ex-
ample, due to automatic abortion by the system upon
detection of large motion.

The measured hyperthermic temperatures by MR
thermometry were expressed by the measures Tjg, Tso,
and Toy. T5o indicates the median temperature or the
temperature that was exceeded by 50 % of the target re-
gion. Similarly, Tho and T indicate that the temperature
was exceeded by 10 and 90 % of the target region, re-
spectively. These values were calculated over manually
selected circular regions of interest (ROI) with a diam-
eter of 10 mm at the heated area in each slice, slightly
larger than the HIFU cell size. Temporal mean values
were calculated for the entire hyperthermia duration,
i.e., the time period between the start and end of the
hyperthermia maintenance phase of the feedback algo-
rithm of each block, for the sagittal slice and the central
coronal slice.

Tumor VOIs

For all datasets, a 3D tumor volume of interest (VOI)
was selected by manual delineation of the tumor region
in each slice. This tumor VOI represents the volume tar-
geted for hyperthermia. The tumor VOIs were used for
the comparison of the parameters before and after
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hyperthermia. In the DCE datasets, the delineation was
performed after the bolus passage at the 20th dynamic;
in the IVIM datasets, the delineation was performed at
b=0s/mm®.

DCE data analysis

The DCE-MRI analysis was performed in Matlab
(2013b, Mathworks, Natick, MA). First, dynamic 3D
concentration maps were reconstructed from the
DCE data, using the T baseline maps obtained from
the VFA data [49]. Second, arterial input functions
(AIFs) were measured in the feeding artery of rabbit
5 in both the pre- and post-hyperthermia data.
These representative concentration-time curves were
parameterized using a gamma variate function [50].
The blood plasma volume fraction v, has been re-
ported to be a crucial parameter for the assessment
of tumor physiological response to hyperthermia and
thus should be included in the analysis [14, 15].
Therefore, the extended Tofts DCE model [18, 51]
was used:

t
C(t) = K“"‘“S/Cp(r) ket v, C,(2), (1)
0

where K" is the volume transfer constant between
blood plasma and the extracellular extravascular space
(EES), kep is the rate constant between the EES and the
blood plasma, and C,(7) is the concentration-time curve
in the arterial blood plasma or the AIF. Equation 1 was
fitted voxel-wise to the dynamic concentration maps
using an iterative nonlinear least squares fit procedure,
where the parameterized pre- and post-hyperthermia
AIFs were used for the analysis of the pre- and post-
hyperthermia data, respectively. Maps were recon-
structed of K™, kep, and v,,.

IVIM data analysis

The IVIM-MRI analysis was performed using the data
driven Bayesian modeling method described by Orton et
al. [52], which has no user-defined parameters and is
therefore robust and reproducible [52]. The method was
implemented in Mathematica (7.0, Wolfram Research
Inc., Champaign, IL), and the following bi-exponential
model was used:

S(b) = So (fp etDr (1-fp) e’b'D‘), 2)

where D, is the true diffusion, f, is the perfusion fraction,
and D, is the pseudo diffusion, induced by the vascular
components. The Bayesian modeling method makes
Gaussian approximations of the IVIM parameter histo-
grams, resulting from least squares fitting of Eq. 2.
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These approximations are used as prior distributions to
push outlier estimates with high uncertainty towards the
center of the histogram [52]. To fill the prior distribu-
tion appropriately, the muscle surrounding the tumor
was included and any water from the tank was excluded.
Maps were reconstructed of D,, f,, and D,,.

Detection of changes after hyperthermia

While the mean of a VOI is an often used metric for the
comparison of parameter values, histograms are less arbi-
trary and capture heterogeneity [6, 14, 37, 53]. Histograms
were made for each DCE and IVIM parameter, with ranges
of 0 to 5 for K™ [min~ '] and kep [min~ 1,0 to 1 for
v, [fraction] and f,[fraction], O to 3 for D, [10~ 3mm?/s], and
0 to 30 for D,[10~ 3mm?/s]. All data were distributed in 100
bins, and the bin heights were expressed in percentage of
the tumor VOI volume.

For quantitative comparison, we determined the me-
dian values of all values inside the mentioned ranges (ex-
cluding the outliers). The parameter distributions were
expected to be non-normal owing to tumor heterogen-
eity, and the pre- and post-hyperthermia data were un-
paired since the tumor VOIs were delineated
individually. Therefore, the Mann-Whitney U test was
used, which was also performed in a region of interest in
the surrounding muscle to test the significance of the
changes in the median values. The region in the sur-
rounding muscle used for the analyses was selected in
the central slice through the tumor. The muscle region
size was 10 x 10 voxels for DCE and 5x5 voxels for
IVIM. The selected muscle region was smaller for [IVIM
than for DCE, because of the lower resolution and the
limited availability of surrounding muscle tissue for
which the IVIM parameters were extracted. Statistical
tests were performed in Matlab (2013b, Mathworks, Na-
tick, MA), and a p value of less than 0.001 was consid-
ered indicative of a statistically significant difference.

Two-dimensional cross-correlation histograms provide
insight in the inter-relationships between parameters
[34] and were made for the following combinations: v, x
Krans, kep x Kans, Vp X keps fp x Dy Dpx Dy, and f, x D,,.
The same number of bins and ranges were used as for
the individual parameter histograms, and the intensities
were expressed in percentage of the tumor VOI volume.

To ensure that observed changes in parameter values
were induced by hyperthermia, data reproducibility was
tested. The IVIM scan of rabbit 1 after hyperthermia was
repeated, and the results were compared. Since the DCE
scans require the use of a contrast agent, a similar repro-
ducibility test was deemed not feasible for DCE-MRL

Results
The T2w MR images acquired during the planning phase
showed that all rabbits had one tumor except for rabbit
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4, which had three small contiguous tumors. Rabbit 2
had a large necrotic core in the tumor and died during
the last few minutes of the hyperthermia treatment.

Tumor VOIs

In the MR images, it could be observed that all rabbits
had one tumor except for rabbit 4, which had three
small contiguous tumors. In rabbit 2, a large necrotic
core was observed. Table 1 shows the volumes of the
tumor VOlIs, for which the DCE and IVIM analyses were
performed. The discrepancy between the volumes delin-
eated in the DCE and in the IVIM data can be attributed
to the differences in the MR images (voxel size, contrast,
geometrical distortions by EPI). Note that the volumes
before and after hyperthermia were comparable.

MR-HIFU-induced mild hyperthermia

Three 10-min blocks of mild hyperthermia (40 to 42 °C)
were successfully achieved in all five rabbits using MR-
HIFU. In rabbit 2, one mild hyperthermia block was
manually aborted because of observed motion artifacts
in the MR thermometry; in rabbit 4, one mild hyperther-
mia block was automatically aborted because of connec-
tion loss between the MR console and the HIFU
console. More details on the mild hyperthermia dura-
tions are given in Table 2. Figure 2a, b shows examples
of magnitude and temperature images of the MR therm-
ometry sequence; examples of the temporal profiles of
T10, Tso, and Tog of the corresponding ROIs (circles) are
shown in Fig. 2c. The mean values of Ty, T59, and Tog
over the entire hyperthermia duration are shown in
Table 3 and plotted in Fig. 2d for each rabbit. All T5
values were within the desired hyperthermic
temperature range of 40 to 42 °C. In the coronal slice of
rabbit 3, the mean T3, was higher than 42 °C and the
mean 75, was higher than the other rabbits.

Reproducibility

In Fig. 3, the results of the repeated IVIM scans of rabbit
1, acquired post-hyperthermia, are shown. The parameter
maps of the central slice through the tumor (Fig. 3a) look
similar, as well as the individual parameter histograms

Table 1 Tumor VOI volume (cm?)

Rabbit DCE VIM

nurber e Pox e Pox
HT HT HT HT

1 13 13 19 19

2 13 13 20 20

3 12 12 17 18

4 7 7 13 13

5 10 1 17 19

HT hyperthermia
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Table 2 Details on MR-HIFU mild hyperthermia of rabbit Vx2

tumors

Block Rabbit 1 Rabbit 2 Rabbit 3 Rabbit 4 Rabbit 5
HT 8 min 10 min 4 min 135 s° 10 min
Cool 5 min 5 min 8 min 13 min 11 min
HT 10min 70 10min 10 min 10 min
Cool 5min 3 min 9 min 5min 17 min
HT 10 min 10 min 10 min 10 min 10 min
Cool 5 min 5 min

HT 10 min 10 min

Total HT duration 28 min 31T min 24 min  32min 30 min

HT hyperthermia

“Manually aborted: motion artifacts in the MR thermometry observed
PAutomatically aborted: connection loss between the MR console and the
HIFU console

(Fig. 3b) and the cross-correlation histograms (Fig. 3¢c), ex-
cept for some minor differences in D,. Table 4 shows that
the median D, values showed a small but statistically sig-
nificant difference of 0.14 x 10~ mm?*/s (p < 0.001), while
no significant difference was found between the median f,
(p =0.14) and D,, values (p = 0.09).

DCE and IVIM parameter maps

The DCE and IVIM parameter maps of the central slice
through each tumor are displayed in Fig. 4. Please note
that the region for which the IVIM analysis was per-
formed is limited to the region included for the Bayesian
prior distribution, for which any water from the tank
was avoided in the delineation. Variations in the param-
eter maps can be observed between the rabbits, both be-
fore and after hyperthermia. Rabbit 2 died during
treatment; the corresponding data were excluded from
the analysis. The signal-to-noise ratio of the pre-
hyperthermia IVIM data acquired in rabbit 5 was very
low. We therefore decided to refrain from including
IVIM data from this animal in any comparisons. De-
creased values can be observed in the post-hyperthermia
v, map of rabbit 3 (v,<0.02) and in all post-
hyperthermia DCE maps of rabbit 4 (v, <0.02, K" <
0.4, and ke, < 0.4; Fig. 4a).

Histograms and median values

Pre- and post-hyperthermia histograms of the DCE pa-
rameters in the tumor VOIs are shown in Fig. 5a. Varia-
tions in the pre-hyperthermia histograms can be
observed between the rabbits, in particular, the &, histo-
grams. Table 5 shows the comparisons of pre- and post-
hyperthermia median values of the DCE parameters and
the corresponding p values, for both the surrounding
muscle and the tumor VOL In the surrounding muscle,
no significant changes were found in the median values
of v, in all rabbits and of k, in rabbits 1 and 4, while
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Fig. 2 MR-HIFU-induced hyperthermia. Examples of magnitude
images (a) and temperature images (b) of the MR thermometry
sequence and Ty, Tso, and Ty profiles over time (c) (rabbit 2, first
hyperthermia block). In (c), the vertical lines indicate the start and
end of the hyperthermia maintenance phase of the feedback
algorithm. The ROIs used for the T, Tso, and Toq calculation are
indicated by the pink circles in the images in (a, b). In (d), the
temporal mean values of Ty, Tso, and To OVer the entire
hyperthermia duration are shown per rabbit

J

significant increases (p <0.001) were found in the me-
dian values of k., in rabbits 3 and 5 and of K" in all
rabbits, in the order of 0.1 min~'. The changes in the
tumor VOI are most obvious in rabbit 4, where all three
DCE parameter histograms, as well as the median
values, shifted towards lower values. For all other rab-
bits, the K™ histograms and the median K" values
shifted towards higher values and the changes in median
values were in the order of 0.2 min™'. The median v, in-
creased in rabbits 1 and 5 and decreased in rabbits 3
and 4. In the k., histograms of rabbits 3 and 4, clear
shape changes can be observed. The median k., in-
creased in rabbit 1 and decreased in rabbits 4 and 5. In
rabbit 3, the bulk shift in the k,, distribution towards
lower values changed the skewness (Fig. 5a). This
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Table 3 Temporal mean and standard deviation (SD) of Tsq, Tog, and T, averaged over the three hyperthermia blocks

Rabbit Central coronal slice Sagittal slice
Tso (°0) Tso (°0) Tio Q) Tso (°0) Tso (°0) Tio Q)

1 404 395 41.1 404 398 411

2 40.9 40.1 414 409 40.2 413

3 418 41.1 423 406 398 411

4 40.7 40.0 410 403 39.7 40.6

5 411 405 414 40.8 40.2 412
Mean (SD) 409 (0.5) 402 (0.6) 414 (05) 406 (0.3) 399 (03) 41.1(03)

resulted in an increase in the median k., (Table 5),
which does not reflect the observed changes in the
histogram (p = 0.006).

Pre- and post-hyperthermia histograms of the IVIM
parameters in the tumor VOIs are shown in Fig. 5b. It is
notable that all pre-hyperthermia histograms look differ-
ent in shape. Table 6 shows the comparisons of the pre-
and post-hyperthermia median values of the IVIM pa-
rameters and the corresponding p values, for both the

surrounding muscle and the tumor VOI In the sur-
rounding muscle, no significant changes were found in
the median values of f, in all rabbits and of D, in rabbit
1 and of D, in rabbits 3 and 4. The significant changes
in D, in rabbits 3 and 4 were in the order of 0.2 x 10
% mm?/s and in D, in rabbit 1 was 700 x 107> mm?/s.
For the tumor VOI, all D, histograms shifted towards
higher values after hyperthermia and the changes in the
median values in rabbits 3 and 4 were in the order of

a D¢ [10°*mm?/s) fp [fraction]

b D; [103mm?/s] fp [fraction]

10

% of tumor VOI
o

Dy, [10-3mm?/s]

(7]

D¢ [103mm?/s)

0 0.5 10 0

Io.so : l 50

|0.25

0

b

15 3
Fig. 3 Reproducibility results. Results of the repeated IVIM scans acquired in rabbit 1 after hyperthermia. The parameter maps of the central slice
through the tumor are shown in (a), the individual parameter histograms in (b), and the two-dimensional cross-correlation histograms in (c). The
parameter maps in frame (a) are shown as an overlay over the corresponding magnitude image (b= 0 s/mm?)

Dy, [10-*mm?/s]

post HT

Repeated Rabbit1
scan

" 25
i. . ID

Dy, [10-3mm?/s]

post HT

L-‘.__—‘.. —

Repeated Rabbit1
scan

10 20 30

fp [fraction]

Dy, [10°mm?/s]
Rabbit 1
post HT

% of tumor VOI

Repeated
scan

0 0.5 1.0
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Table 4 Reproducibility test: median IVIM parameter values of
two dynamic scans acquired in rabbit 1, post-hyperthermia (HT)

Rabbit 1 post-HT Repeated scan p value
D, [107% mm?/s] 1.06 120 <0.001
f, [fraction] 0.16 017 0.14
D, 107> mm?/s] 52 6.1 0.09

0.4 x 10 mm?/s. In the histograms and median values
of f, an increase was found in rabbit 1 and a decrease in
rabbits 3 and 4. The pre-hyperthermia D, histogram of
rabbit 1 shows an even distribution covering a wide
range, and the median value was much larger than all
other median D, values (Table 6). The median D, value
decreased in rabbit 3 and increased in rabbit 4.

Cross-correlation histograms
The two-dimensional cross-correlation histograms of the
DCE parameters in the tumor VOIs are displayed in
Fig. 6a. The shapes of the different pre-hyperthermia
cross-correlation histograms are comparable for rabbits
1, 3, and 5; for rabbit 4, the shapes are less elongated
and more diffuse. After hyperthermia, the cross-
correlation histograms of rabbits 1 and 5 become more
diffuse, while those of rabbits 3 and 4 become more
compact, particularly the v, xK™" and v, x ke
histograms.

The cross-correlation histograms of the IVIM parame-
ters in the tumor VOIs are displayed in Fig. 6b. In rabbit
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1, the pre-hyperthermia D, x D, histogram shows a
strong correlation between the parameters for all voxels,
which indicate systematic errors in the parameter esti-
mation. Similarly, the post-hyperthermia f, x D, histo-
gram of rabbit 1 shows a strong correlation between the
parameters for a large portion of the voxels. The cross-
correlation histograms of rabbits 3 and 4 have similar
shapes but differ in their distributions: in rabbit 4, there
were more voxels with low f,, values in combination with
high D, values.

Discussion

DCE-MRI and IVIM-MRI data were acquired before and
after MR-HIFU-induced hyperthermia in rabbits with
Vx2 tumors. The pre-hyperthermia DCE and IVIM par-
ameter maps and histograms revealed variations between
the rabbits. This implies that the group was heteroge-
neous in terms of DCE and IVIM parameter distribu-
tions. This heterogeneity was also observed in five other
rabbits that did not receive the hyperthermia treatment
and were therefore not included in this study (data not
shown). The post-hyperthermia data were acquired
within 1 h after hyperthermia. Although the duration of
the physiological effects after applying hyperthermia is a
controversial aspect [54], several studies have shown that
changes in regional blood flow and permeability per-
sisted and could be detected up to a few hours after
hyperthermia [10, 12, 13]. Therefore, it is assumed that
the effect of differences in timing of the image

-

g =
o c
E
o
=
- £
3 —
& x
1)
e
(=9 —
c
o
=1
o
o
o
=
=
Iy =9
o =
(=19
1)
S
o
L d
8
a

b =0 s/mm? for IVIM). Rabbit 2 (1) died during the treatment.

Fig. 4 DCE and IVIM parameter maps. Pre- and post-hyperthermia DCE (a) and IVIM (b) parameter maps of the central slices through the tumor
for all rabbits (1-5). The parameter maps are shown as an overlay over the corresponding magnitude image (20™ dynamic for DCE and

2 =

o ~
E
E
o
(=]
-

o =
-

& )

Q

T

a —_—
c
o
S
o
m
o
=

-

: =

a

o —

o k4
3
E
£
bl
(=]
—

o =
=9

& a




Lam et al. Journal of Therapeutic Ultrasound (2016) 4:9

Page 9 of 13

a DCE

Ktams [min?)  w, [fraction) kep [min]

= Pre

|+

Post

W Pre

+t -h : |
fisse

Post

% of tumor VOI

£ Pre

Post

U1 Pre

.+.

D_I A

0o 2 4 05 1 2 4

T +L §

Post

v

+ increase, — decrease

Fig. 5 DCE and IVIM parameter histograms. Histograms of the pre- and post-hyperthermia DCE parameters (a) and of the IVIM parameters (b) in
the tumor VOI of the rabbits included in the analysis. Median changes are indicated at the top right of each post-hyperthermia histogram:

b IVIM

D, [10°mm?/s]  f, [fraction] D, [10*mm?/s)

| I I I | A S -
| [ | | "
(72
o
o
0.
10 w
[«
0 3
9 104 .
I~ Q
=] o
£
= |
=
[e]
X 10 w
o
0 4
wy
o
o
% 1 10 20 30

acquisitions on the parameter changes is limited, as
compared to other sources. The changes in the DCE and
IVIM parameters after hyperthermia varied between the
rabbits and are discussed below.

Rabbit 4 had three contiguous small tumors instead of
a single tumor and received a few minutes longer hyper-
thermia than the other rabbits. This combination may
have led to a different physiological response in this
rabbit as compared to the other rabbits. In the other
rabbits (rabbits 1, 3, and 5), increases in K" were ob-
served after hyperthermia which were a factor 2 larger
than the changes observed in the surrounding muscle.
For the median k., values, only the change in rabbit 4
could be considered to be significant; the changes in the

other rabbits were in the same order as those found in
the surrounding muscle. The changes in the median
K™ and ke, values were in the order of 0.2 min~},
where extreme outliers were excluded to have a realistic
representation of the parameter value distribution.
Hijnen et al. [38] showed K™ changes of about
0.1 min™" after hyperthermia in tumor-bearing mice in
the non-necrotic tumor areas, which is in the same
order of magnitude as the changes observed in this
study. In the whole tumor, changes in the mean K™%
and k., values were smaller (0.017 and 0.022 min ).
Discrepancies between the results may be explained by
the different tumor and animal models. In addition, a dif-
ferent model was used for the DCE analysis, standard Tofts
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Table 5 Median DCE parameter values in the surrounding muscle and in the tumor VOI, pre- and post-hyperthermia

Surrounding muscle K3 [min~ '] v, [fraction] Kep min~"]

Rabbit Pre Post p Pre Post p Pre Post p
1 0.14 030 + <0.001 0.003 0.001 0.077 0.65 0.74 0.004
3 0.08 0.20 + <0.001 0.000 0.000 0.021 0.26 037 + <0.001
4 0.16 0.26 + <0.001 0.000 0.000 0476 043 048 0.247
5 013 0.27 + <0.001 0.000 0.000 0817 0.81 0.96 + <0.001

Tumor VOI K™ [min™] v, [fraction] kep [Min~"]

Rabbit Pre Post p Pre Post p Pre Post p
1 034 0.68 + <0.001 0.055 0.085 + <0.001 0.68 0.80 + <0.001
3 0.14 0.34 + <0.001 0.043 0.024 - <0.001 0.36 041 0.006
4 039 0.29 - <0.001 0.053 0.030 - <0.001 057 0.26 - <0.001
5 0.30 047 + <0.001 0.087 0.110 + <0.001 0.74 0.62 - <0.001

Plus signs (+) indicate significant increase after hyperthermia, and minus signs (-) indicate significant decrease after hyperthermia

[55] versus extended Tofts [18], resulting in a discrepancy
in the permeability and flow contributions in K" [56)].
The changes in v, with (p <0.001) in the tumor VOI
can be considered to be significant, as no significant
changes were observed in the surrounding muscle. An
increase in v, was observed in rabbits 1 and 5 and a de-
crease in rabbit 3. Interestingly, hyperthermic tempera-
tures measured in the coronal slice of rabbit 3 were
higher than in the other rabbits: the mean T5, was close
to 42 °C and the mean 77, was higher than 42 °C. Since
v, represents the blood plasma volume fraction in a
voxel, it is strongly related to the size of the vessels. It is
well known that tumor capillaries are hastily formed and
lack the ability to actively dilate. However, tumor capil-
laries may passively dilate upon hyperthermia, as a result
of increased blood flow in adjacent tissue or of increased
cardiac output [7], which may explain the increase in v,
observed in rabbits 1 and 5. At moderate hyperthermic
temperatures (>42 °C), reduced tumor vessel diameters
have been reported in Vx2 tumors in rabbit ear chambers
(8], which may explain the observed v, decrease in rabbit 3.

Dudar and Jain [8] suggested that the reduction of tumor
vessel diameters may be attributed to swelling of the endo-
thelial cells and tissue parenchyma, induced by a decreased
pH in tumors during hyperthermia. The k., histogram
shapes of rabbits 3 and 4 clearly changed after hyperthermia
to a more compact distribution. It is notable that these are
the same rabbits that showed a decrease in v,. This poten-
tial relation can be seen more clearly in the v, x k., histo-
grams of these rabbits.

For the IVIM analysis, the reproducibility was tested
by comparing a repeated IVIM scan. No significant dif-
ferences were found between the f, and D, histograms
and median values (p = 0.14 and p = 0.09); the changes in
D, were significantly different and relatively small com-
pared to the median values (13 and 12 %).

The pre-hyperthermia IVIM data of rabbit 5 had a low
signal-to-noise ratio, possibly due to motion during the ac-
quisition; hence, a reliable comparison with the post-
hyperthermia data was not possible. A clear increase in D,
after hyperthermia could be seen in rabbits 1, 3, and 4. The
changes in the median values were factors of 1.7, 2.6, and

Table 6 Median IVIM parameter values in surrounding muscle and in the tumor VOI, pre- and post-hyperthermia

Surrounding muscle D, 11073 mm?/s)]

Rabbit Pre Post p Pre
1 042 046 0.670 0.07
3 032 0.60 + <0.001 0.16
4 046 0.55 - <0.001 0.18

Tumor VOI D [10’3 mmz/sJ

Rabbit Pre Post p Pre
1 0.82 1.06 + <0.001 0.10
3 040 0.76 + <0.001 0.19
4 140 1.82 + <0.001 0.20

f, [fraction]

f, [fraction]

D, 107 mm?/s]

Post p Pre Post p

0.10 0.026 300 1000 + <0.001
0.18 0.642 56 54 0.509
0.16 0.060 6.6 82 0.497

D, 107 mm?/s]

Post p Pre Post p

0.16 + <0.001 135 52 - <0.001
0.17 - <0.001 76 5.0 - <0.001
0.16 - <0.001 4.7 6.0 + <0.001

Plus signs (+) indicate significant increase after hyperthermia, and minus signs (=) indicate significant decrease after hyperthermia
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3.0 times larger than the changes found in the reproducibil-
ity test and factors of 6, 1.3, and 4.7 times larger than the
changes found in the surrounding muscle. This indicates
that the observed changes in D, are likely to be induced by
hyperthermia. For f,, no significant changes were found in
the surrounding muscle. In the tumor VO], an increase in
J» was observed in rabbit 1 and a decrease in rabbits 3 and
4, similar to the changes observed in v, While the interpre-
tations of f, and v, are different, signal fraction and volume
fraction, respectively, the parameters are strongly related to
each other as they both reflect the intra-voxel fraction of
the vascular component.

The f, values in rabbit 1 are much lower than in the other
rabbits, which indicate an overall small contribution of vas-
cular components to the signal. The cross-correlation his-
tograms of these data revealed a strong correlation between
D, and D, suggesting systematic errors in the parameter
estimation. The low f, values are likely the reason for the
systematic D,, estimation errors, inasmuch D,, cannot be es-
timated accurately when f, is too low [57, 58].

While the results show that changes in DCE and IVIM
parameters after MR-HIFU-induced hyperthermia could
be detected, the changes were found to be variable be-
tween the rabbits. The group appeared to be heteroge-
neous in terms of DCE and IVIM parameter
distributions, and it is likely that such a start condition
would result in a heterogeneous outcome. In future re-
search, stratification of starting conditions would be de-
sirable, which requires a larger number of subjects.

Conclusions

In this study, we have shown that DCE and IVIM pa-
rameters maps and (cross-correlation) histograms could
be constructed to detect changes after MR-HIFU-
induced hyperthermia in rabbit Vx2 tumors. Perfusion
parameter histograms provided insight into the changes
of the parameter distributions and showed that changes
in most of the median values were statistically significant
(p <0.001). However, the detected changes were variable
between the rabbits. The results suggest that DCE- and
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IVIM-MRI may be promising tools to assess tumor
physiology responses to hyperthermia. Further research
in a larger number of subjects is necessary to assess their
value for treatment response monitoring.
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