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Abstract

Background: Initial catheter-based renal sympathetic denervation (RSD) studies demonstrated promising results in
showing a significant reduction of blood pressure, while recent data were less successful. As an alternative
approach, the objective of this study was to evaluate the feasibility of using magnetic resonance-guided high-intensity
focused ultrasound (MRgHIFU) to perform RSD in a porcine model.

Methods: An intravascular fiber optic temperature probe was used to confirm energy delivery during MRgHIFU. This
technique was evaluated both in a vascular phantom and in a normotensive pig model. Five animals underwent
unilateral RSD using MRgHIFU, and both safety and efficacy were assessed. MRl was used to evaluate the acoustic
window, target sonications, monitor the near-field treatment region using MR thermometry imaging, and assess the
status of tissues post-procedure. An intravascular fiber optic temperature probe verified energy delivery. Animals were
sacrificed 6 to 9 days post-treatment, and pathological analysis was performed. The norepinephrine present in the
kidney medulla was assessed post-mortem.

Results: All animals tolerated the procedure well with no observed complications. The fiber optic temperature probe
placed in the target renal artery confirmed energy delivery during MRgHIFU, measuring larger temperature rises
when the MRgHIFU beam location was focused closer to the tip of the probe. Following ablation, a significant
reduction (p = 0.04) of cross-sectional area of nerve bundles between the treated and untreated renal arteries was
observed in all of the animals with treated nerves presenting increased cellular infiltrate and fibrosis. A reduction
of norepinephrine (p=0.14) in the kidney medulla tissue was also observed. There was no indication of tissue
damage in arterial walls.

Conclusions: Performing renal denervation non-invasively with MRgHIFU was shown to be both safe and
effective as determined by norepinephrine levels in a porcine model. This approach may be a promising
alternative to catheter-based strategies.
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Background

Arterial hypertension represents a critical health challenge
for millions of people, producing a well-established
increased risk for an array of cardiovascular diseases af-
fecting 74.5 million adults in the USA [1]. Appropriate ad-
justment of blood pressure is frequently challenging,
despite the numerous pharmacologic options available. In-
deed, roughly 40 % of patients undergoing treatment have
uncontrolled hypertension [2]. A portion of this popula-
tion has treatment resistant hypertension (TRH), which is
identified in a patient when a therapeutic strategy of a di-
uretic and two other antihypertensive drugs fail to lower
blood pressure values below 140/90 mmHg. While the
prevalence of TRH in the uncontrolled hypertension
population varies significantly in the literature, there ap-
pears to be an approximate prevalence of 10-20 % [3, 4].
Recognition of this common clinical problem has stimu-
lated research exploring adjunctive non-pharmacological
approaches. The well-characterized role of the sympa-
thetic renal nervous system in initiating and maintaining
hypertension [5] has led to the development of technolo-
gies that target and interrupt sympathetic renal nerves
residing in the arterial wall and perivascular soft tissue.

Numerous pre-clinical and clinical trials have inves-
tigated endovascular catheter-based technologies as a
primary or adjuvant treatment for TRH. Initial clinical
studies reported promising results by significantly
lowering both systolic and diastolic blood pressure [6,
7], even after 3 years of follow-up [8]. Those studies
resulted in an increased interest in the technique and
usage at multiple worldwide sites. However, a ran-
domized, multicenter clinical trial applying catheter-
based renal sympathetic denervation (RSD) in humans
did not show a significant decrease in blood pressure
when compared to the sham-control group [9]. Con-
versely, a prospective, open-label randomized control
trial [10] demonstrated that in subjects treated with
RSD in addition to a standardized stepped-care anti-
hypertensive treatment (SSHAT) had reduced ambula-
tory blood pressure more than SSHAT alone.

Even though the catheter-based technologies have
shown variable results, the procedure has demonstrated
significant promise justifying the investigation of both
catheter-based and other RSD treatment options.

High-intensity focused ultrasound (HIFU) is an estab-
lished treatment option in various disorders [11] and has
been proposed as an alternative energy delivery source for
RSD therapy. Recently both an ultrasound and MRI-guided
approach demonstrated feasibility using HIFU to perform
RSD in normotensive canine [12] and porcine models [13]
with mixed efficacy results. This study furthers those feasi-
bility assessments by performing renal denervation using
magnetic resonance-guided high-intensity focused ultra-
sound (MRgHIFU) in a normotensive porcine model.
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Methods

In MRgHIFU therapy, MRI is used in all aspects of
the treatment process including planning, real-time
procedure monitoring, and assessment [11]. Ideally,
real-time MR thermometry [14] is used to measure
the temperature elevation during the procedure and
predict the tissue damage based on the accumulated
thermal dose [15]. However, imaging artifacts due to
the presence of motion (including arterial, respiratory,
and peristalsis motion) and the presence of fat render
standard proton resonance frequency thermometry
techniques inaccurate [14] for monitoring temperature
in the predominantly fatty tissue around the renal ar-
teries. Because of these effects, obtaining accurate MR
thermometry measurements in the area immediately
surrounding the renal artery (ie., regions extending
approximately 1 cm away radially from the artery center-
line) is extremely challenging. In this work, real-time MR
thermometry measurements were not obtained in the re-
gions immediately surrounding the renal artery during the
RSD procedure. Therefore, in order to obtain a real-time
assessment of the energy delivery to the target area sur-
rounding the renal artery by the HIFU beam, an intravas-
cular fiber optic temperature probe was placed in the
targeted artery and continuously monitored during the
RSD procedure. The use of this invasive temperature
probe was evaluated in a vascular phantom as well as an
in vivo normotensive porcine model.

Vascular phantom preparation
In order to validate the use of an intravascular
temperature probe, a vascular phantom was developed.
Figure la shows an excised rabbit aorta secured in an
acrylic phantom mold. A fiber optic temperature probe
(Neoptix, Quebec, Canada) was placed in the vessel such
that fluid could flow around the probe through the ves-
sel, and tissue-mimicking gelatin was poured around the
vessel [16]. The phantom was mounted on a pre-clinical
MRgHIFU system (256-element phased-array transducer,
f=1 MHz, 2x2x8 mm focal spot size, Image Guided
Therapy, Inc., Pessac, France), and the entire assembly
was placed in a Siemens Trio 3 Tesla MRI scanner
(Erlangen, Germany). Degassed, deionized water was
used to both acoustically couple the phantom to the
transducer and to perfuse the embedded vessel.
Multiple sonications were performed in a three-plane,
27-point raster pattern with 1 cm spacing centered on
the embedded excised artery at two flow rates that
allowed for flow past the intravascular probe, 40 and
80 mL/min (Fig. 2). Each point was sonicated for 20 s at
35 W and 20 s of cooling time elapsed before the follow-
ing point was sonicated. The fiber optic temperature
probe recorded the temperature in the artery every 0.5 s.
MR thermometry during the experiment was achieved
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pig experiments

Fig. 1 Vascular phantom construction. a Picture of vascular phantom mold with excised rabbit aorta and fiber optic temperature probe in place.
b Same vascular phantom after gelatin was poured around the vessel. ¢ Fiber optic temperature probe used in both the phantom and in vivo

J

with a 3D segmented-EPI gradient echo sequence (TR/
TE =40/10 ms, flip angle =40°, 1.6 x 1.6 x 3 mm reso-
lution, 112 x 256 x 24 mm FOV, ETL =9. Two separate
2-channel surface RF coils were placed on the sides of
the cylindrical phantom holder to provide sufficient SNR
for the study.

The position of each focal spot was determined by the
location of the peak temperature as measured by the
MR temperature imaging (MRTI). The temperature rise
(Trise = Tpeak — Thaseline) detected by the fiber optic probe
at each sonication location was also determined.

Animal preparation

All applicable institutional and national guidelines for
the care and use of animals were followed. Five normo-
tensive female Yorkshire pigs (40-50 kg) were included
in the study. Anesthesia was induced with a Telazol,
Ketamine, and Xylazine cocktail (4.4, 2.2, and 2.2 mg/kg,
respectively) and maintained with isoflurane (1-3 %,
inhaled). Hair on the back of the animal was removed

.. Top view of plane 2
k 8

Fig. 2 Sonication pattern in the vascular phantom. a Axial MR image
of gelatin vascular phantom placed over focused ultrasound transducer.
Three planes of a nine-point raster pattern were sonicated centered on
the vessel. b Top view of a single nine-point raster pattern. The
approximate location of the vessel is shown by the dashed lines.
The approximate location of tip of the fiber optic probe is indicated by
the green star. Spacing between the points in plane and between
planes was 1 cm

with clippers and a depilatory cream to improve acoustic
window quality.

Similar to the vascular phantom, a fiber optic
temperature probe was placed in the right renal artery
through percutaneous access of the femoral artery
under fluoroscopy guidance. The temperature probe
was sheathed in a 6-French multipurpose angiographic
catheter with the tip of the temperature probe extended
approximately 1 cm distal to the end of the angio-
graphic catheter.

MRgHIFU renal sympathetic denervation procedure

RSD in the porcine model was performed using the
same pre-clinical MRgHIFU system and MRI scanner
as in the vascular phantom study. The animal was
placed on top of the MRgHIFU system in a custom
support holder in an oblique supine position with an
integrated 9-channel RF receive coil surrounding the
animal (seen schematically in Fig. 3). MR imaging
was used to accurately position the animal, evaluate
the acoustic window, and plan the sonication locations

Fig. 3 Schematic of pig placement on MRgHIFU device. The
position of the transducer below the animal with the cone
depicting the ultrasound focus. The positioning of the nine RF
receiver coils is also shown
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around the target renal artery (3D T1-weighted Volumet-
ric Interpolated Breath-hold Examination [VIBE], T2-
weighted Turbo Spin Echo [TSE]).

Because of the location of the bowel in all the animals
treated in this study, RSD using MRgHIFU was per-
formed in all animals unilaterally on the right side, with
the left side serving as a control. Several single-point
sonications (as detailed in Table 1) were applied to the
regions at a close anatomical proximity to the right renal
artery. In general, the number of sonications applied per
animal was a function of the overall length of the renal
artery and the available study time. While the transducer
power output was approximately 80 W for animals 1
through 3, the power was increased in animals 4 and 5
to 110 and 140 W, respectively. The animal’s SpO,, end
tidal CO,, and body temperature were monitored con-
tinuously throughout the MRgHIFU procedure.

Due to the significant susceptibility artifacts from peri-
stalsis, blood flow artifacts, and the presence of fat in
the target region, temperature measurements in the area
immediately surrounding the renal artery were not ob-
tained in this study. However, MR thermometry tech-
niques were used to monitor the treatment in the near
field of the ultrasound beam. The 3D imaging volume,
as indicated in Fig. 4, was placed such that any interfer-
ence between the ultrasound beam and transverse
process could be monitored using real-time MRTI (3D
Segmented-Echo Planar Imaging [EPI]). The MRTI mea-
surements were used to calculate the thermal dose, as
defined by Sapareto and Dewey [15], deposited in the
tissues during the course of the MRgHIFU RSD treat-
ment. T2-weighted TSE and post-contrast VIBE scans
(0.05 mmol/kg, MultiHance, Bracco Diagnostics Inc.)
were used to evaluate surrounding tissues post-
procedure. Relevant MR parameters for all listed se-
quences are located in Table 2.

Tissue processing

Six to 9 days after the renal denervation procedure, the
animal was sacrificed and a necropsy performed. Bilateral
kidneys, renal arteries and surrounding tissue, abdominal
aorta, and adjacent muscle were examined for any gross
abnormalities. Tissue was fixed for 24 to 48 hours in 10 %
formalin. Each renal artery was divided into four equal

Table 1 MRgHIFU sonication details for each of the treated animals
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Ultrasound transducer

Fig. 4 Axial T1-weighted MR image of animal 3. The acoustic
window of the ultrasound transducer targeting the right side of
the animal is shown by the dashed lines. The approximate locations of
six of the 17 sonications are shown as white ovals surrounding the right
renal artery. The MR images were used to target the tissue surrounding
the artery avoiding the transverse process (solid arrow) and bowel
(hollow arrow). The angiographic catheter can be seen in the aorta
and renal artery (hollow dashed-arrow). The dotted box shows the
approximate location of the field of view monitored during the
RSD procedure

J

segments with the segment closest to the aorta designated
as region 1 and the segment closest to the kidney desig-
nated as region 4. The segments were dehydrated in in-
creasing concentrations of alcohol, embedded in
paraffin, and then sectioned (5 pm). One hematoxylin
and eosin (H&E) slide per segment was prepared and
analyzed.

Morphometric analysis

The stained sections were digitally scanned with the
ScanScope® XT system and visualized using Image-
Scope software in eSlideManager (Aperio/Leica Bio-
systems, Vista, CA) [17, 18]. Each arterial segment
(regions 1-4) was analyzed using positive pixel count

Animal 1D No. of sonication points Sonication time/point (s) Acoustic power (W) Total energy (kJ) Atime (days)
1 7 20 83 11.6 6
2 26 20 81 421 6
3 17 20 82 279 7
4 16 20 120 384 9
5 16 45 140 100.8 9

Atime indicates time between the RSD procedure and necropsy
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Table 2 Typical MRI parameters used in the in vivo experiments
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Pulse sequence TR (ms) TE (ms) Flip angle (°) Resolution (mm) FOV (mm)

3D Tiw VIBE 433 1.97 9 12X1.7%3 380x 286 x 168
2D T2w TSE 2000 89 180 13x14%x4 320x 280 72
3D seg-EPI MRTI 35 11 25 2X2X3 256 %192 30

and measurement tools of ImageScope software to de-
termine nerve count, cross-sectional nerve and artery
area, and distance from nerve to arterial lumen. For
calculation and analysis of mean nerve area, only
nerves that were greater than 5000 pum? and smaller
than 70,000 um? were included in the calculation.

Norepinephrine-ELISA

At necropsy, both kidneys were immediately placed in
an ice-cold phosphate buffered saline, and segments of
the medulla were isolated, weighed, homogenized in
0.8 M EDTA, and then frozen (-80 °C). The levels of
norepinephrine (ng/mL) in the homogenate were mea-
sured via enzyme-linked immunosorbent assay (ELISA)
following the manufacturer’s instructions (Rocky Moun-
tain Diagnostics, Colorado Springs, CO).

Statistics

Nerve area and kidney norepinephrine (NE) levels were
compared between the treated and non-treated sides
with a paired ¢ test (JMP Pro 11; SAS; Cary, NC), with
significance set at p < 0.05.

Results

Vascular phantom

The results shown in Fig. 5 from the vascular phan-
tom experiments demonstrate that MRgHIFU sonica-
tions performed closer to the tip of the fiber optic
temperature probe resulted in a higher measured
temperature rise. This decreasing trend of temperature
rise as a function of sonication distance from the probe tip
to the focused ultrasound beam location is seen at both
the 40 and 80 mL/min flow rate. Predictably, overall
higher temperature rises were observed at the lower
flow rate.

MRgHIFU RSD procedure

A representative pre-RSD treatment acoustic window
evaluation using T1-weighted (T1lw) 3D VIBE images,
which is utilized to evaluate effective transducer posi-
tioning and acoustic coupling of the transducer to the
animal’s skin, is shown in Fig. 4. The spine, bowel,
kidney, aorta, and renal artery are all easily visualized
without contrast agent allowing the animal to be po-
sitioned such that the interaction of the ultrasound
beam with high acoustic impedance anatomy was
minimized. The angiographic catheter housing the

fiber optic temperature probe is seen in the aorta and
at the renal artery junction.

The fiber optic temperature probe placed in the renal
artery on the treated side provided verification of energy
delivery that was independent of MR measurements.
The temperature rise measured by the probe as a func-
tion of distance to the targeted MRgHIFU beam location
is shown in Fig. 6. Similar to the observations made in
the vascular phantom, the temperature rise measured by
the fiber optic temperature probe decreases as the
distance between the probe tip and the MRgHIFU beam
location increases. While the magnitude of this relation-
ship varies, as seen in Table 3, the trend is present for all
evaluated animals. In addition, the magnitude of the
temperature rise increases with increased power output
from the transducer.

The real-time MRTI monitoring that was performed
in the near field of the MRgHIFU beam confirms that in
all animals, some energy was deposited in the muscle
area surrounding the transverse process. Figure 7a shows
the cumulative thermal dose deposited during an RSD
procedure overlaid on a coronal magnitude image. The
volume of tissue in the near field that received possible
permanent damage (thermal dose >240 CEM43°C [19])
ranged from 25 to 1000 mm? as listed in Table 3. This
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Fig. 5 Vascular phantom thermal response. Peak fiber optic
temperature change measured in the vascular gelatin phantom
during each sonication as a function of distance between the
focused ultrasound beam location and fiber optic probe tip. The
two tested flow rates, 80 mL/min (blue x) and 40 mL/min (red o)
are shown
. J
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Fig. 6 Porcine model thermal response. Peak fiber optic temperature
change measured during the RSD procedure in each of the five
animals. Decreasing trends of temperature rise as a function of
distance from the fiber optic probe tip to the focal spot position
was observed in all animals

potential damage was confirmed by delayed contrast-
enhanced T1w VIBE image (Fig. 7b). In two out of five
of the animals, the presence of edema was detected by
post-RSD T2-weighted imaging. The existence of edema
and the corresponding size of the enhancing regions are
reported in Table 3.

MRgHIFU RSD procedure safety

All animals recovered quickly from the RSD proced-
ure with no observed complications. During necropsy,
all anatomical structures between the energy source
and the target region were carefully observed includ-
ing the skin, muscle tissue, spine, renal arteries and
veins, ureters, liver, bowels, and kidneys. Based on
gross histological examination, there was no detect-
able tissue damage along the acoustic beam, other
than in the target region. Importantly, injuries of the
arterial wall were not observed.

Gross examination revealed several hemorrhagic spots
located in the fatty tissue around the treated renal arter-
ies. The length of the renal artery from the aorta to the
bifurcation was not found to be significantly different

Table 3 Procedure results for all treated animals

g8 8

Distance (mm)
3

g B

50 100
Distance (mm)

Fig. 7 MRI monitoring of the renal denervation procedure.

a Coronal view of a plane in the near field of the ultrasound
beam for animal 7. The enlarged inset indicates an area that
accumulated thermal dose with potential necrotic damage. The total
volume with potential damage in this animal was 123 mm?>. The values
for all animals are given in Table 3. b Corresponding enhancement
around the transverse process denoted by the white arrow is seen
at the slice location in a post-ablation delayed contrast-enhanced
T1w image. The approximate insonified area is represented by the
dashed white line (a gap is present so as to not obscure the
non-enhancing area)

(»p=0.17) between the treated (3.4+0.5 cm) and the
control side (3.1+0.2 cm). The distance from the
nerves to the lumen (endothelium) of the renal artery
was determined for both the treated and control sides
(Table 4). A total of 83 nerves on the treated side
and 69 nerves on the control side (Table 4) met the
inclusion criterion. Thirty-nine nerves that were
smaller than 5 um? on the treated side and 49 on the
control side were excluded. There were 14 nerves on
the treated side that exceeded 70 pm?® and 12 on the
control side. The majority of the nerves were located
within 3 mm from the lumen of the artery (90 % control
and 96 % treated). Regionally, a majority of nerves were
located in regions 3 and 4, closer to the renal pelvis, both
on the control (73 %) and treated (71 %) sides. There was
also no significant difference in renal artery area between
the treated side (6.03 +1.53 mm?) and the control side
(6.70 + 2.04 mm?, p = 0.27). There were no histological in-
dications of damage to the renal artery as a result of the
MRgHIFU RSD procedure.

Animal Fiber optic temperature probe Near-field MRl measurements

D Slope (°C/mm) R? value Edema (y/n), volume (mm?3) Volume (mm?3) 2240 CEM 43 °C
1 -0.04 0.74 No 125

2 —-0.007 0.020 Yes, 269 607

3 -0.004 0.016 No 25

4 -0.13 0.27 Yes, 774 1002

5 -0.12 047 No 123

Slope is the decreasing temperature trend as a function of distance from fiber optic probe tip to MRgHIFU focus location
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Table 4 Distance from the renal nerves to the endothelium of the renal artery as a function of anatomical position for treated and

untreated arteries

Distance from Treated arteries

Control arteries

lumen (mm)

Region 1 Region 2 Region 3 Region 4 Region 1 Region 2 Region 3 Region 4
0-1 1(1.2%) - - 1(1.2%) - - 3 (44 %) 1(1.5 %)
1-2 5 (6.0 %) 10 (12.1 %) 20 (24.1 %) 28 (33.7 %) 2(29 %) 11 (156 %) 20 (29.0 %) 14 (223 %)
2-3 2 (24 %) - 6 (7.2 %) 2 (24 %) 2 (29 %) 5(7.3 %) 2 (34 %) 6 (8.7 %)
3-4 1(1.2%) - 4 (4.8 %) - - - - 3 (44 %)
>4 - 336 %) - - - - - -
Nerves/region 9 13 30 31 4 16 25 24

Each table cell represents the number of nerves visible in a single slide prepared from the designated region with the percentage of nerves for that given side.
There is a proximal to distal distribution, while region 1 is closest to the aorta and region 4 closest to the kidney

MRgHIFU RSD procedure efficacy

Cumulative nerve area on the treated side was statisti-
cally smaller than the cumulative nerve area on the con-
trol side, with all of the animals treated with MRgHIFU
having reduced nerve area on the treated side (Table 5,
p =0.04). The mean nerve area on the treated side was
roughly 25 % smaller than the control side (Nerve Area-
treated/Nerve Areaconyor = 0.74 + 0.14, Table 5). Figure 8
shows the morphological changes observed, with the
nerves on the treated side having increased cellular infil-
trate, fibrosis, and shrunken appearance, all of which in-
dicate damage to the nerve. The ratio of norepinephrine
in the treated and control kidneys decreased in all five of
the animals evaluated (Table 5), though this decrease
was not found to be statistically significant between the
treated and non-treated side (p=0.14). The absolute
values for norepinephrine ranged from approximately
500-1800 on the treated side and 1000-3300 on the
control side as shown in Table 5.

Discussion

MRgHIFU RSD efficacy

This study has demonstrated the feasibility of using
MRgHIFU to perform RSD in a normotensive porcine
model safely, resulting in nerve bundle damage. The
norepinephrine measured directly from the kidney me-
dulla tissue was reduced post-RSD procedure when
comparing the treated kidney with the contralateral con-
trol kidney indicating successful RSD was performed
[20]. While the number of animals treated in this feasi-
bility study was small, the norepinephrine ratio generally

decreased as the applied energy increased indicating a
potential dose effect that should be explored further in
future studies. This preliminary finding agrees with RSD
procedures performed with catheter methods. In the
Symplicity HTN-3 trial [9], there was a positive correl-
ation between the number of ablation attempts and the
decrease of blood pressure. The reduction seen in the
norepinephrine data is supported by the histological ap-
pearance of damaged renal nerves. In addition, the
cross-sectional area of the nerve was reduced by ap-
proximately 25 % on the treated side. This result is simi-
lar to other studies [21, 12] that have shown that nerve
atrophy is a common indication of nerve damage, as ob-
served following renal ablation and other common nerve
injures and nerve injury models [22].

While the difficulties of obtaining accurate MR therm-
ometry data at the treatment area prevented acute as-
sessment of the success of the MRgHIFU procedure, the
independent temperature measurements assessed with
the intravascular fiber optic temperature probe provided
confirmation of energy delivery. While the temperature
rise measured by the probe for each sonication point did
exhibit both inter- and intra-animal variability, in gen-
eral, higher temperature rises were measured when the
MRgHIFU beam focus was located close to the probe
tip. Obviously, one of the main advantages of performing
RSD with MRgHIFU is that the procedure could be
completely non-invasive. Therefore, while using an intra-
vascular fiber optic probe when performing RSD with
MRgHIFU would not be ideal in future clinical work,
this study has demonstrated that it can provide valuable

Table 5 Ratio of treated to control arteries for different outcome measures

Animal # 1 2 3 4 5
Energy delivered (kJ) 216 421 279 384 100.8
Nerve area ratio 0.76 0.83 0.50 0.81 0.80
Medulla norepinephrine, treated side (ng/ml/g) 1147 1573 1813 525 1155
Medulla norepinephrine, control side (ng/mil/g) 1269 1827 2192 1060 3342
Medulla norepinephrine ratio 09 0.86 0.83 0.50 0.35
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of the vessels (V)

Fig. 8 H&E stained sections of the a treated and b control arteries in animal 7. Inset (N) indicates the arterial nerves. Nerves damage is present in
the treated side as exhibited by perineural fibrosis (arrow) and degradation of the nerve fibers (asterisk). There was no apparent damage to either

information and qualitative treatment confirmation in
pre-clinical studies. Therefore, while MR thermometry
was not able to predict an acute treatment assessment,
the use of the temperature probe did demonstrate the
MRgHIFU beam was focused in close proximity to the
renal artery. This result extends the assessment that has
been performed in other HIFU RSD studies [13, 12].

This study did not compare blood pressure measure-
ments before and after the RSD procedure. Similar to
other work, we found separating the effect of the RSD
procedure and anesthesia on blood pressure [23] to be
quite difficult. Indeed, whether RSD affects blood pres-
sure in normotensive animals remains a matter of debate
[12]. For these reasons, kidney medulla norepinephrine
concentration is reported as the primary efficacy out-
come for this study, a proven robust marker for effective
renal nerve destruction [20]. The norepinephrine reduc-
tion ranging from 10 to 65 % post-RSD MRgHIFU pro-
cedure compares to other clinical studies [6] where
analysis from 10 patients revealed a mean reduction in
norepinephrine spillover of 47 % at 1 month after bilat-
eral RSD. These numbers also compare to other pre-
clinical RSD studies performed with HIFU studies. In
Wang et al. [12], a 51 % reduction in plasma norepin-
ephrine was observed 6 days post-procedure. Con-
versely, in Freyhardt et al. [13], no significant change
was observed in the renal parenchyma norepinephrine
concentration.

MRgHIFU RSD safety

While edema around the transverse process was ob-
served in two animals with the largest thermal dose
accumulations, no tissue effect was observed during
necropsy. Although the majority of the entire kidney
is in the near field of the ultrasound beam, as seen in
Fig. 5, there was no observable damage to the organ.

In addition, since the focal spot of the transducer is
ellipsoid shaped approximately 2 x 2 x 8 mm in size, it
is likely that the MRgHIFU beam focus may have dir-
ectly targeted the renal artery. Despite this possibility,
there was no indication of renal artery wall damage
in any of the analyzed histological sections.

The real-time monitoring of the near-field regions dur-
ing the MRgHIFU RSD treatment may potentially in-
crease the safety of the overall procedure. Other studies
have documented the potential of near-field heating
buildup [24], particularly in cases where multiple sonica-
tions are executed from a fixed acoustic window, as was
the case in this study.

Model applicability

A porcine model was selected for this study due to
similarities of the porcine cardiovascular system to
human anatomy [25]. In this study, the highest nerve
bundle density is at the distal part of the renal artery,
close to the kidney hilum. However, others have also
reported the opposite with more nerve fibers closer
to the aorta [26, 27]. This variability of results indi-
cates that when conducting an ablation procedure, it
will likely be more effective if a greater region of the
nerves around the artery is ablated to account for
inter-patient variability.

Other anatomical features including the bowel and
spinal column vary quite substantially between humans
and porcine. The vertebrae of the porcine spinal column
exhibits prominent transverse process potentially caus-
ing some local absorption of the acoustic beam. This ef-
fect was observed in two of the animals as assessed by
the presence of edema post-RSD procedure. Conversely,
in humans, the distance of the bowel to the left renal
artery is not as close as in pigs. This difference would
allow for bilateral renal artery ablation in humans.
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Indeed, human trials with ultrasound-guided HIFU are
ongoing (clinicaltrials.gov, NCT02029885).

While the goal of RSD is to destroy the renal artery
nerves with a negligible amount of collateral damage, it
is difficult to determine the damage mechanism in this
study. In our study, the total delivered energy per ani-
mal varied from 10-100 kJ. Other RSD HIFU studies
reported total energy delivery of 18 kJ [12] and a mean
of 26.2 k] per animal [13] with varied efficacy results.
This variability indicates that successful treatment out-
come is a function of applied dose as well as animal
position and size.

Study limitations

Normotensive animals were used in this study and were
treated unilaterally, which likely limits the efficacy re-
sults observed. Due to the location of the bowel, only
the right side could be treated introducing a potential
bias in the study. No conclusions can be made regarding
the long-term effects of RSD performed with MRgHIFU
since the longest time span from ablation to renal nerve
and kidney tissue analysis was 9 days. We are currently
exploring this question in ongoing pre-clinical studies.
In addition, it should be noted when norepinephrine
levels are assessed directly from the kidney tissues as
done in this study, it does not allow the comparison of
norepinephrine levels pre-RSD MRgHIFU procedure.
There is the possibility that the reduction of norepineph-
rine may be due to other physiological changes including
a change in stress level or vasoconstriction. However, in
spite of these potentially confounding factors, the en-
couraging reduction in norepinephrine in the kidney
medulla between the treated and control sides indicated
that there was a dose ranging effect, which provides use-
ful information to guide future study design.

Potential advantages of MRgHIFU

MRgHIFU is a completely non-invasive technology that
has the potential of being a valid RSD procedure tech-
nique. While arterial damage [28, 29] during catheter-
based techniques has been rare, MRgHIFU would have
no impact on vascular structure. It would also overcome
any issues with renal artery anatomy [4]. In addition,
performing the procedure under MR guidance can allow
for detailed treatment planning and monitoring as well
as a non-contrast angiographic method [30].

Conclusions

This study demonstrates the feasibility of performing
RSD using MRgHIFU in a porcine model. Soft-tissue
contrast achieved by MR guidance is advantageous in
pre-procedural planning, ensures accurate targeting, and
allows for detailed visualization of the region of interest.
While MR thermometry provided real-time monitoring
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of critical adjacent structures in the near field during the
procedure, an intravascular fiber optic temperature
probe provided real-time feedback at the target area.
MRgHIFU has the potential to be a valid technique for
non-invasively performing RSD. Future studies will
evaluate this approach in a hypertensive animal model
with a longer follow-up, and efforts will be made to im-
prove MR thermometry techniques around the renal
arteries.
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