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Abstract

Background: Bleeding from limb injuries is a leading cause of death on the battlefield, with deep wounds being
least accessible. High-intensity focused ultrasound (HIFU) has been shown capable of coagulation of bleeding
(cautery). This paper describes the development and refereed in vitro evaluation of an ultrasound (US) research
prototype deep bleeder acoustic coagulation (DBAC) cuff system for evaluating the potential of DBAC in the
battlefield. The device had to meet quantitative performance metrics on automated operation, therapeutic heating,
bleeder detection, targeting accuracy, operational time limits, and cuff weight over a range of limb sizes and
bleeder depths. These metrics drove innovative approaches in image segmentation, bleeder detection, therapy
transducers, beam targeting, and dose monitoring. A companion (Part II) paper discusses the in vivo performance
testing of an animal-specific DBAC system.

Materials and methods: The cuff system employed 3D US imaging probes (“Ix”) for detection and localization
(D&L) and targeting, with the bleeders being identified by automated spectral Doppler analysis of flow waveforms.
Unique high-element-count therapeutic arrays (“Tx”) were developed, with the final cuff prototype having 21 Tx’s
and 6 Ix’s. Spatial registration of Ix’s and Tx’s was done with a combination of image-registration, acoustic time-of-
flight measurement, and tracking of the cuff shape via a fiber optic sensor. Acoustic radiation force impulse (ARFI)
imaging or thermal strain imaging (TSI) at low-power doses were used to track the HIFU foci in closed-loop
targeting. Recurrent neural network (RNN) acoustic thermometry guided closed-loop dosing. The cuff was tested on
three phantom “limb” sizes: diameters = 25, 15, and 7.5 cm, with bleeder depths from 3.75 to 12.5 cm. “Integrated
Phantoms” (IntP) were used for assessing D&L, closed-loop targeting, and closed-loop dosing. IntPs had surrogate
arteries and bleeders, with blood-mimicking fluids moved by a pulsatile pump, and thermocouples (TCs) on the
bleeders. Acoustic dosing was developed and tested using “HIFU Phantoms” having precisely located TCs, with
end-of-dose target ΔT = 33–58 °C, and skin temperature ΔT ≤ 20 °C, being required.
(Continued on next page)
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Results: Most DBAC cuff performance requirements were met, including cuff weight, power delivery, targeting
accuracy, skin temperature limit, and autonomous operation. The automated D&L completed in 9 of 15 tests (65 %),
detecting the smallest (0.6 mm) bleeders, but it had difficulty with the lowest flow (3 cm/sec) bleeders, and in
localizing bleeders in the smallest (7.5 cm) phantoms. D&L did not complete within the 9-min limit (results ranged
10–21 min). Closed-loop targeting converged in 20 of 31 tests (71 %), and closed-loop dosing power shut-off at
preset ΔTs was operational.

Summary and conclusion: The main performance objectives of the prototype DBAC cuff were met, however the
designs required a number of challenging new technology developments. The novel Tx arrays exhibited high
power with significant beam steering and focusing flexibility, while their integrated electronics enabled the
required compact, lightweight configurability and simplified driving controls and cable/connector architecture.
The compounded 3D imaging, combined with sophisticated software algorithms, enabled automated D&L and
initial targeting and closed-loop targeting feedback via TSI. The development of RNN acoustic thermometry
made possible feedback-controlled dosing. The lightweight architecture required significant design and fabrication
effort to meet mechanical functionalities. Although not all target specifications were met, future engineering solutions
addressing these performance deficiencies are proposed. Lastly, the program required very complex limb test
phantoms and, while very challenging to develop, they performed well.

Keywords: Ultrasound, Acoustic coagulation, Acoustic hemostasis, Acoustic thermometry, ARFI, Bleeding, Cautery,
Combat bleeding, HIFU, Image compounding, Neural network, Recurrent neural network, Phantom

Background
Bleeding from vascular injuries in the arms and legs
is the leading cause of preventable death on the mod-
ern battlefield. For the time in which this develop-
ment program started, such wounds represented 50–70 %
of all injuries treated (e.g., during Operation Iraqi Free-
dom [1]). While most injured soldiers can reach compe-
tent surgical and medical care within 30–90 min [2], due
to tactical situations, many of the injured cannot reach
such care until several hours after being wounded. The
possibility of prolonged evacuation times, the need to pre-
vent additional casualties, and the importance of complet-
ing the intended mission explain why casualties should be
treated in the field.
In extremity vascular injuries in combat, bleeding

occurs from superficial and deep vessels. Superficial
wounds (e.g., <5 cm deep) are usually visually detect-
able and can be effectively treated with bandages,
gauze sponges, or with recently developed hemostatic
dressings, like HemCon® or QuickClot® [2].
D&L of deep vascular wounds, however, are much

more challenging and are less accessible to coagula-
tion intervention in the field. Further, their bleeding
rates can vary widely, from severe hemorrhage
(>500 mL/min) resulting in rapid irreversible shock to
tiny occult bleeders (<5 mL/min), resulting in un-
detected fatal exsanguination over several hours. The
project described herein1 was oriented to developing
an ultrasound technology-based solution addressing
the need to treat deep bleeding limb wounds in the
field.

Hemostasis: mechanisms of clotting (simplified)
In arterial injury, the hemostatic process, a complex “co-
agulation cascade,” starts when collagen in the vessel
wall (e.g., in the adventia, the outermost layer) becomes
exposed to blood. Platelets then adhere to the exposed
collagen (the first stage of the cascade). During adhesion,
platelets release clotting factors and become “activated”
(second stage of clotting), recruiting and stimulating
other platelets (among other functions), drastically chan-
ging the platelet shapes (e.g., spiny protuberances are
formed), causing them to stick to each other (“aggrega-
tion,” the third stage of the cascade). Aggregation is
assisted by fibrinogen, cross-linking the platelets to form
a foundation for “plug” formation, in or along the vascu-
lar wall break. Aggregation, an active metabolic process,
also involves fibrin to further cross-link the platelets, ul-
timately forming the insoluble fibrous network of the
final hemostatic plug. Being a metabolic process, tissue
heating thermally stimulates clotting by increasing plate-
let activation and the release of activating factors, enhan-
cing aggregation. With sufficient heating, purely thermal
mechanisms are upregulated and become significant
contributors to coagulation.
Thermal coagulation of blood is therefore a rate

process (Arrhenius equation behavior), rapidly accelerat-
ing above 60 °C in vitro, but appearing to have no fur-
ther clotting changes above 80 °C [3]. For thermal
coagulation to occur in 30–60 s, blood temperatures ap-
proaching 75 °C were required. Pfefer et al. [4], including
data of other investigators for comparison, found a wide
range of blood coagulation “threshold temperatures”
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(Fig. 1 shows their Arrhenius rate curves). For whole
blood, to achieve coagulation with a 30-s exposure, the
thresholds are approximately 60–70 °C.

Acoustic hemostasis
In addition to its role in the coagulation cascade, move-
ment of collagen into injury tracks or vessel wall breaks
contributes to mechanical plug formation walls (note:
collagen ≈ 1/3 the dry weight of arterial walls [5]). Vascu-
lature contains type I and type III collagen, having fiber
matrix structures capable of holding molecular water. In
thermal acoustic hemostasis (acoustic cautery), collagen
can be more dominant in plug formation compared to
normothermic clotting. This is due to a combination of
mechanisms, including heat’s ability to relax collagen
and acoustic radiation force’s ability to “push” collagen
and move cells (e.g., fibroblasts, collagen-secreting cells).
Also with heating, water is driven out of vessel walls and
collagen is denatured, cross-linking its fibers and shrink-
ing it, stiffening and strengthening the adventitia in the
vicinity.
HIFU is capable of producing hemostasis in vascular

and organ puncture wounds [6–9]. In these studies,

surface or superficial puncture wounds were treated with
dose exposure times (tdose) typically greater than 1 min
using hand-held HIFU devices. Arterial sealing involves
blood coagulation combined with a “mechanical plug”
involving native collagen, created from heating and tis-
sue disruption (emulsification) [9]. As for other forms of
cautery, acoustic hemostasis is also accompanied by lo-
calized acute tissue injury. Thermal doses associated
with significant collagen shrinkage, measured as a func-
tion of tissue temperature history, are, in fact, above
doses associated with cell death [10]. Importantly, in
acoustic hemostasis of bleeding organs (liver and
spleen) where tissues were heated >70 °C, complete
healing and tissue regeneration within 60 days has been
reported [9, 11].

Acoustic regime for DBAC
Since the DBAC system is to be autonomously operated,
treatment control and repeatability is paramount for
safety. For this reason, the acoustic regime has been
constrained to largely linear thermal mechanisms of co-
agulation, minimizing shockwaves, higher harmonics,
cavitation, boiling, and non-linear behaviors associated

Fig. 1 Coagulation threshold temperatures versus heating exposure time for blood and blood constituents (data taken from Pfefer et al., [4]).
Other tissue coagulation criteria are included for comparison. For whole blood, the Hth = 4.4 J/cm2 curve was deemed the most valid experimentally.
Red dots on the curves show 30 s (DBAC maximum dose time objective) exposure points and the corresponding coagulation temperature threshold
target ranges (horizontal dotted lines)
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with the high intensities needed for short tdose lesioning.
Avoiding gas production is desirable since bubbles are
unstable and can either augment heating at the target or
form a reflecting acoustic barrier, shielding power depos-
ition [12]. Acoustic lesion formation associated with tdose ≥
10 s tends to be dominated by thermal mechanisms [13],
and in the current project, tdose ≤ 30 s was an objective.
End-of-dose temperatures (Teod) at or above ≈70 °C have
been shown to achieve thermal hemostasis in animal ar-
terial puncture wounds using tdose roughly on the order of
30 s [9, 10, 14]. Both collagen-centric hemostatic effects
and blood coagulation have similar threshold tempera-
tures in this tdose regime (Teod > 70 °C and Teod ≈ 60–
80 °C, respectively). Further, since 100 °C creates boil-
ing, the dose objectives sought for DBAC were set at
approximately 70 °C ≤ Teod ≤ 95 °C. The DBAC treat-
ment strategy is thus to create a cautery lesion (coagu-
lation necrosis), with collagen shrinkage-associated
fused reinforced “plugs.” Synergistically, supplemental
bleeding reduction also comes from thermal constric-
tion of small vessels.

Cuff-based mechanical control of hemorrhage
Active bleeding during acoustic dosing can profoundly
reduce coagulation since thermal energy and coagulation
constituents are swept out of the region, and coaptation
(apposition of vascular wall tissues) may also be com-
promised. Compensatory increases in acoustic power to
overcome heat dissipation from active bleeding could be
used but would increase the potential for superficial
burns and push intensities toward non-linear regimes,

affecting control and repeatability of dosing. For these
reasons, the DBAC cuff design includes an integral tour-
niquet, operated to minimize, or completely stop, blood
flow during acoustic dosing. The tourniquet alternates,
automatically, between being constricted during dosing
(inflated pneumatically or hydraulically) and being re-
laxed (deflated) during the bleeder targeting processes.

DBAC cuff and program requirements
The work described herein was performed under United
States Defense Advanced Research Projects Agency
(DARPA) contract no. HR0011-08-3-0004. Milestone
and target specifications referred to are those set be-
tween DARPA and the authors before the start of the
project. A few minor modifications to these were
allowed during the course of the project based on find-
ings and insights gained. For example, the prototype cuff
constructed needed to be only 3/4 of the length of the
specified full (80 cm long) cuff.
The DBAC device uses ultrasound imaging arrays (Ix)

to detect and localize the arterial bleeding sites at depth
and then uses HIFU arrays (“tiles” or Tx) to cauterize
them. The intended product would be a lightweight,
portable, and highly automated DBAC “cuff” (Fig. 2),
which would be rapidly installed on the injured limb by
a fellow soldier. Inherent in the cuff approach is the
advantage of simultaneous confocal therapeutic beams
delivered from the circumference of the limb, improving
(over single HIFU-transducer treatment) the concentra-
tion and localization of heat at the target, while provid-
ing a larger aperture at the skin to reduce cutaneous

Fig. 2 DBAC cuff concept (cross-section). Cuff on a limb with deep bleeding arterial punctures. Coagulation approach enabled by bleeder imaging
from multiple 3D imaging probes (Ix) and HIFU treatment from multiple therapeutic arrays (Tx)
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heating. Although the program required that DBAC be
tested in vivo (see [15]), most core performance func-
tions had to be evaluated quantitatively, which required
controlled in vitro test phantoms.
The prototype cuff device and its performance were

subject to the following specifications: the cuff had to
weigh ≤4.8 kg and address bleeders in limbs ranging in
diameter from 7.5 (small arm) to 25 cm (large thigh),
corresponding to minimum and maximum radius of
curvature requirements (MinRC = 3.75 cm; MaxRC =
12.5 cm,). Related to these, bleeder depths (depth of
penetration) had to range from 3.75 (MinDP; small arm)
to 12.5 cm (MaxDP; larger limbs). The cuff had to be
flexible and configurable to adapt to the different limb
sizes. The dose (therapeutic focused power deposition)
requirements at the bleeder site were defined by a mini-
mum thermal dose (MinTD), i.e., 70 °C < Teod < 95 °C
(in vivo equivalent). For phantom testing, this translated
to 33 °C ≤ ΔTeod ≤ 58 °C, i.e., using equivalent temperature
elevation (ΔTeod) based on 37 °C body temperature2. Fur-
ther, the dosing had to achieve MinTD at the target over a
minimum therapeutic volume (MTV) (here, an 8-mm
spherical region, reflecting the need to coagulate an ad-
equate puncture wound volume3). These thermal criteria
had to be met without exceeding a maximum thermal skin
dose (MTSD)4 = Teod ≤ 52 °C, or ΔTskineod ≤ 20 °C. To
minimize the risk of energy deposition outside of the tar-
get area, a maximum thermal tissue dose (MTTD) specifi-
cation required that no significant heating occur outside
of a 1-cm radius region (lateral to beam axis) around the
target. Regarding targeting, D&L requirements included
resolving minimum arterial (and puncture) diameters
(minimum structure resolution, MSR = 0.6 mm) and slow
bleeder flow velocities (minimum detectable velocity,

MDV= 3 cm/s). D&L time was limited to 5 min for the
first bleeder and 2 min for subsequent bleeders, with all
MinTD therapeutic doses administered within 30 s. Met-
rics on automated operation permitted only two com-
mands, one to start D&L (targeting) and one to start
therapy, with targeting and treatment required to be
closed-loop feedback processes.

Materials and methods
Cuff configuration and acoustic architecture
A commercial imager, the Siemens ACUSON SC2000™
ultrasound system (http://www.healthcare.siemen-
s.com/ultrasound/cardiovascular/acusonsc2000-ultra-
sound-system) with multiple Siemens 4Z1c matrix
array volume (3D) imaging probes (fc = 2.5 MHz)
(http://www.healthcare.siemens.com/ultrasound/ultra-
soundtransducer-catalog; see 4Z1c probe category)
provided the imaging core functionality for D&L, target-
ing, and acoustic thermometry. Cuff weight and imaging
and therapy coverage dictated the optimal number and
placement of ultrasound arrays; the specified full cuff de-
sign was 80 cm in length and included 9 Ix’s and 28 Tx’s,
placed on seven cuff “panels” (Fig. 3).
Imaging coverage was simulated in cuff-on-limb CAD

models using 3D sector pyramidal image volumes char-
acteristic of the 4Z1c (Fig. 4). Similarly, therapeutic
coverage models used the focal depths and beam steer-
ing capabilities of the Tx’s.

Cuff prototype
The cuff device tested was permitted to be a “3/4 cuff”
(60 cm in length) due to test phantom fixture and phan-
tom fabrication limitations. Accordingly, the proof of
concept cuff comprised 6 Ix’s and 21 Tx’s. Two

Fig. 3 DBAC “full cuff.” Specified largest limb (L = 80 cm, D = 25 cm) cuff architecture, with therapeutic tiles (Tx’s) and 4Z1C imaging probes (Ix’s)
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ACUSON SC2000 systems were used in the prototype
system, since each supported three Ix’s, and thus avoided
the development of an image probe multiplexing switch.
The DBAC software (SW) allowed imaging modes to be
sequenced within the treatment steps and workflow.

Therapeutic approach
The DBAC treatment is based on depositing acoustic
energy (“doses”) at or near the bleeder site(s) in timed
HIFU exposures of tdose seconds. Adequate total acoustic
power (Pdose [Watts], the superposition of that delivered
from each selected Tx) must be delivered accounting for
tissue attenuation, steering losses, perfusion energy dissi-
pation, and focal power scanning patterns appropriate to
the MTV size. In a DBAC product, after a dose is
complete and cool-down achieved, bleeder status would
be evaluated by the D&L subsystem to determine the
need for subsequent doses.

Cuff automation and user interface
The DBAC operational commands were limited to two
user interface “buttons:” (1) Start D&L and (2) Start
Therapy. The first button command initiated the detec-
tion and localization sequence, and at the conclusion of
D&L the bleeding site therapy target markers were
shown on the 3D vascular tree image on the system dis-
play, which also included the centerlines of the vessels.

In addition, a listing of the number of vascular bifurca-
tions and bleeders found was provided for operator
inspection before the bleeder coordinates were trans-
ferred to the therapy subsystem.
Since D&L was to localize the first bleeder in ≤5 min,

with subsequent bleeders in ≤2 min (e.g., ≤9 min for
three bleeders), the Start D&L button launched a system
timer to record these sub-process durations. The Start
Therapy command launched the sequence to load the
bleeder coordinates in the Tx frame of reference, select
appropriate tiles, perform closed-loop correction of the
beam foci to the target location, and deliver the therapy
dose.

Automated delivery of the thermal dose
The total Tx power requirements were estimated by ana-
lyzing doses based on absorbed acoustic power in 8 mm
diameter MTV volumes, within the ranges of accessible
bleeder depths and locations. A “power equalization”
algorithm was used to balance, at the target, the
absorbed power from each Tx, which also helped pre-
serve the desired shape of the heated region, in that
more Tx beams (subject to equalization) led to more
spherical therapeutic volumes. As illustrated in Fig. 5,
the therapy control algorithm accepted the target loca-
tion and the list of “available” Tx’s, where available refers
to those within distance and steering range of the target

Fig. 4 DBAC Cuff architecture, with discrete “panels” holding Ix and Tx arrays. Overlapping imaging sectors (blue pyramidal 3D volumes) enabled
D&L coverage of deep arterial bleeders (5–12.5 cm deep on larger limbs). The seven-paneled cuff was suited to the largest limb (25-cm
diameter thigh)
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with unobstructed acoustic paths. The optimal combin-
ation of tiles (based on their acoustic relationship to the
target, including the location of bones in beam paths)
was automatically determined and the weighted
absorbed powers of the selected tiles defined. The out-
put powers for each candidate tile, calculated based on
the steering angle (using a beam directivity lookup table
[LUT]) of each focused beam and the tissue path to the
target, were calculated.
The absorbed power within a spherical tissue volume

of diameter d0 around the focal plane was estimated by

Qm ¼ Q0ηm 1 – e−2αd0
� �

; ð1Þ

where Qm is the absorbed acoustic power produced by
the mth Tx, Q0 is the maximum power capacity per Tx,
ηm is the transport efficiency (ratio of acoustic power ar-
riving at the target to input electrical power) for the mth
Tx, and α was the attenuation coefficient of the tissue. A
ranking method was then employed to determine the
optimal number of tiles. The Tx’s were ranked by ηm, in
descending order. The first k tiles were grouped to-
gether, where k =minTx, minTx + 1, …, maxTx, where
the minimum and maximum number of tiles, minTx
and maxTx, were pre-specified. For each tile group, the

powers from the k beams were equalized, and the total
powers from all groups compared. The Tx group with
the maximum total power was selected. The recruited
Tx list was then provided to the algorithm, along with
the power weighting factors, w (0 <w ≤ 1).

Therapeutic arrays
Compact arrays were developed employing a 52 ×
13 mm aperture Acoustic Module (AM; 96 × 12 ele-
ments, azimuth and elevation, respectively) as the basic
working unit for the therapy tile. After testing each
1152 element AM, four were assembled into a tile
(Fig. 6a). The Tx was lightweight (≈115 g), with the
beamforming electronics integrated into the array using
ASICs-on-flex, and each AM required only a simple
serial shift register-based interface (3 wires) and a
power connection. A connector/buffer printed circuit
board (PCB) allowed mounting of flex circuit data con-
nectors and power connectors to the Tx module. Each
4-AM tile (4608 elements) was beamformed as a single
2D array unit, and since the Tx had significant elec-
tronic beam steering (60° and 45° in azimuth and eleva-
tion, respectively) and rapid scanning, the need for
array mechanical motion was avoided. Each tile had a
programmable controller (“Tile Manager”) based on a

Fig. 5 Automated Tx tile selection and dosing algorithm
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digital signal processor, enabling each Tx to receive
high-level commands such as target coordinates, dose
time, interleave-timing with the imager, etc., via USB.
The Tile Manager and control SW allowed flexibility
and support of evolving system needs. As shown in
Fig. 6b, Schlieren imaging assisted in verification of
proper beamforming and was used to rapidly check the
acoustic output from all AM sections. A high dielectric
constant transducer ceramic was also used in the Tx’s,
allowing high power at moderate voltages. By imple-
menting high-efficiency acoustic design and appropri-
ately tuning acoustic matching layers, acoustic powers
of 170 W/tile were reliably produced, with peak powers
of 200 W and a ratio of acoustic power out to the elec-
trical DC power into the AMs exceeding 50 %.

Cuff mechanical architecture
The prototype cuff had individual fabric panels, each
with elastomeric end-sections providing sealing and con-
formability to the limb phantoms upon which they were
tested, Fig. 7.
Bonded to the underside of each fabric panel was a

lightweight rigid plastic frame which provided a mounting
surface for the Tx’s and Ix’s. On each edge of the panel, a
high strength, triple-bead Ziploc™-type zipper seal had
been RF welded to the fabric. Since the fluid coupling
compartment was filled with degassed water, the seals on
the panel seams were used to provide a water-tight inter-
face between each panel and allowed the cuff to adapt to
the limb size; four panels for 7.5-cm limbs, and up to
seven panels for the 25-cm limbs.

Cuff system electronics architecture
The system electronics comprised: (a) a control PC (Dell
workstation model T5400, Dell Inc., Round Rock, TX,

USA) with custom SW enabling the DBAC operations
and user interface; (b) three low-power analog and logic
voltage supplies; (c) therapy power supply (3 kW, 150 V,
22 Amp variable supply, Agilent N8740A, Agilent Tech-
nologies, Santa Clara, CA, USA) powering all Tx’s (vari-
able Tx voltages and duty cycle were used to control dose
power); (d) two SC2000 ultrasound systems (enabling six
4Z1c transducers to be multiplexed); (e) interconnections,
cabling, hubs, and instrumentation. A large custom 4-wire
cable supplied power from the system cart to the cuff.
Built into the wiring was a USB 2.0 hub for each panel,
feeding into a single 8-port cuff USB hub. Data flowed
from the imaging systems to the control PC, including im-
aging and thermocouple data (TC’s monitored via a DAQ
USB device).

Fig. 6 Therapeutic tile test fixture and Schlieren beam testing. a Test fixture holding two tiles (Tx) and b Schlieren image from the combined Tx
beams, here confocal to same target location. Each tile comprised four acoustic modules (AM); image shown in (b) detects a transmission fault in
one half of the AM on the far left

Fig. 7 Fully Tx-populated seven-paneled cuff. Each panel had three
therapy arrays (Tx’s) and one imaging array (Ix) installed. Not all 4Z1c
imaging probe ports were simultaneously populated. This three fourth
length configuration (21 Tx’s) embodied 96,768 therapeutic
array elements
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Imaging modes and closed-loop control
DBAC system modes included D&L (B-mode, C-mode,
power Doppler [P-mode] and spectral Doppler [SD] im-
aging modes), closed-loop targeting mode using thermal
strain imaging (TSI), therapeutic power delivery moni-
toring via acoustic thermometry, and post-dose lesion
assessment using B-, C-, and acoustic radiation force
impulse (ARFI) stiffness imaging. The D&L architecture
and imaging system control SW were modified to sup-
port automatic image acquisition, image registration,
synchronous communication, time-critical algorithms,
and a modified scan sequence for the Ix’s. The multiple
overlapping volume images provided by the 4Z1c trans-
ducers on the cuff circumference (Fig. 4), after image
stitching, gave 360° multi-angle, multi-view compounded
Doppler flow images (“tomographic” C- and P-mode
images). To meet DBAC fine structure imaging
requirements (MSR) at deep locations and low flow sen-
sitivity objectives (MDV), system level image SW
changes had to be made. These principally involved in-
creasing the Ix line density in the volume images.
Closed-loop control required data communication path-
ways between modules in the DBAC system. The Image
Analysis module processed the ultrasound raw (IQ) data,
enabling both temperature estimation in therapy moni-
toring mode and beam focus localization in the targeting
mode, with the resultant temperature map and the beam
location plots rendered on the imaging system monitor
display SW.

Cuff software architecture
The DBAC SW platform (external PC) integrated several
functions and controlled most operation of the prototype
system, including Ix’s and Tx’s. The SW architecture was
modular, offering flexibility, but with boundaries between
functions. The system SW controlled: (a) external com-
munication with the ultrasound imager, (b) image data

receiving, (c) cuff control (including communication with
the fiber optic subsystem, and time-of-flight (ToF) calibra-
tion (see below), (d) image stitching and compounding
subsystem, (e) coordinate system management module, (f)
reporting and visualization interface, (g) bleeding D&L
module (analyzing compounded power Doppler image
volumes to find bifurcations and automatically placing SD
gates on each bifurcation), (h) the therapy subsystem
(instructing delivery of power from multiple Tx’s to a par-
ticular coordinate in tissue space), and (i) therapy guid-
ance (including automatic tile selection, dosimetry
calculations and prescription, and closed-loop iterative
targeting focal corrections). The SW system was able to
sequence between all of the above functions almost com-
pletely automatically.

D&L subsystem
The D&L process was made up of registration and image
formation, detection and localization algorithm execution,
and bleeding characterization. An image-based registra-
tion algorithm was used, providing precise knowledge of
the relative positions of each Ix’s image volume (needed
for the volumetric compounding in the 360° view of the
whole limb). The multiple Ix views also improved de-
tection of specular reflectors, removed speckle noise in
B-mode images, and filled in images of vessel segments
(C- and P-mode) that would be otherwise missing due to
Doppler-angle dropout. Automatic vessel segmentation
was performed and a visual model of the shape and size of
the vascular tree was displayed by auto-mapping the vessel
centerlines, after which the bifurcations were determined as
the intersection of centerlines. Once a bifurcation was iden-
tified, three SD gates were automatically placed at the distal,
proximal, and in-the-bleeder locations, at the prescribed
distance from the bifurcation point. To determine whether
a branch was a bleeder or not, the arterial resistive index
(RI = [Vsystole −Vdiastole]/Vsystole) was computed on each SD

Fig. 8 Time-of-flight array position and orientation determination. Distances between sub-apertures on Tx and Ix arrays were used (see the left
panel a) for ToF array and cuff geometry determination (panel a). Photo (b) shows the seven-sided cuff water tank, mimicking a ToF process in
the largest DBAC cuff
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waveform for each outgoing branch. RI is affected by vascu-
lar resistance and vascular compliance; the “venting” of flow
also contributes to altering compliance. Noting the RI for a
bleed is lower than for normal flow, a threshold RI <
0.75 was used to define a bleeder.

Cuff, array, and tissue registration
The known numbers of cuff panels determined the
cross-sectional cuff geometrical shapes available (square,
pentagon, hexagon, and heptagon). These were used,
with image registration to the tissue, to define a

calibration file that provided an initial estimate on trans-
ducer positions and orientations for D&L. Two methods
for accelerating and fine-tuning array positions and ori-
entations were used, that of fiber optic tracking and
time-of-flight measurement.
Local curvature of the flexible conformal cuff and an-

gles between panels (and thus transducer orientations)
could be estimated in real time via fiber optic sensors
(Shape-Tape™, Measurand Inc., Fredericton NB, Canada)
wrapped on the cuff circumference. This reduced the
search space for the image-based registration and, hence,

(a) t = 4 s (b)  t = 9 s

(c) t = 14 s (d) t = 19 s

(e) t = 24 s

Fig. 9 Visualization of a targeting beam focus based on segmented thermal strain imaging (TSI). Here, an extended low-dose exposure is used
and visualized at (a through e): t = 4, 9, 14, 19, and 24 s. The Ix is located at position [0, 0, 0] mm and the imaging volume outlined by the
blue-lined pyramid. The final, algorithm-determined approximation of the targeting beam (black line) and the therapy tile aperture centroid
(black circle) are shown in (e)

Sekins et al. Journal of Therapeutic Ultrasound  (2015) 3:16 Page 10 of 26



its computation time, while increasing robustness of the
overall image volume stitching. This being established, it
was found that the flexible prototype cuff had enough
rigidity to render fiber optic tracking optional. Thus, to
reduce cuff weight, the Shape-Tape device was not
deployed in the in vitro test bed final exam.
Using beamforming techniques and sound transmis-

sions between pairs of sub-apertures on both the Ix and
Tx arrays, the distances between the sub-apertures were
determined via ToF, along with the speeds of sound in

the phantom tissue and water layers (see Fig. 8). ToF
calibration experiments utilized a seven-sided, rigid,
acrylic water tank mimicking the largest limb cuff
(Fig. 8b) and provided for mounting Tx’s and Ix’s in a
cuff configuration. The method estimated locations of
3 × 3 mm sub-apertures on Tx tiles and then, using tri-
angulation, determined the positions and orientations of
all of the Ix’s and Tx’s. The results were compared to
registration images (calibration file-based registration),
and maximal registration errors were quantified.

Fig. 10 Therapeutic power HIFU phantom. Used to assess adequacy of the acoustic temperature elevation (ΔT) in TMM from the cuff multi-array
simultaneous dosing. A thermocouple cluster (shown on the left, with 6 TC’s/cluster), sampled an 8 mm diameter spherical volume (MinTV). Each
60-cm long phantom had three TC clusters at specific coordinates for three vertical locations (lower, upper, middle) in the phantom

Fig. 11 A 25-cm Integrated Phantom (IntP; on the right) and thermocouple arrangement on bleeder branch (left inset). The vascular tree was constructed
of PVA; the soft tissue TMM (agar/gelatin/Al2O3/propanol) was poured and cast around the vasculature. Spherical vascular cavities were used to
mimic hematomas
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Closed-loop targeting
After bleeder localization and the matrix of recruited
Tx’s had been determined, the target locations were
transformed into the local coordinates of each Tx. Be-
cause a flexible cuff and real tissue result in imperfect
panel positioning and alignment, in speed of sound

errors, phase aberrations, and focusing errors, misalign-
ment between the detected bleed location and true ini-
tial focus of each Tx is expected. Accordingly, feedback-
controlled iterative correction of Tx beam foci was im-
plemented. This proceeded by each recruited Tx first
sending a short, low-power therapy array test pulse to

12 points 9 points 9 points

Power deposition

Temperature

12 cm9 cm6 cm

Fig. 13 Simulated dithering patterns. Power deposition and temperature heating patterns with 3-dB focal beam dimensions, at three depths

D=7.5 cm D=15 cm D=25 cm

Fig. 12 Representative Integrated Phantom vasculature geometries derived from HRCT scan images. Each limb size shown with embedded
“vasculature” and “bone” surrogates
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the D&L-determined tissue target coordinate. Sequen-
cing through all recruited Tx’s, the image location of the
focus and the beam-axis center line for each Tx was
defined by either ARFI or TSI and an automated algo-
rithm. The algorithm segmented the beam radiation
pressure-induced tissue displacement pattern (volume)
from the stationary tissue background, fitted a straight

line to all data in the segmented volume, and searched
for the maximum strain (i.e., peak temperature rise)
location, as illustrated in Fig. 9a–e. For each figure, the
plotted data is in the Ix coordinate space, and the Tx is
on the top right, with a 45° angle beam propagating
down to the lower left. The images show a progressively
growing volume of increased thermal strain over 24 s. In
real time, the system display plotted the beam axis as a
line and the peak strain point (focus) as a blue dot. This
“line and dot” approach provided visual feedback on the
difference vector between the intended and actual focus
locations for therapy, as an automated beam correction
algorithm iterated until the actual focus overlapped the
true target location within a specified targeting tolerance
distance (<3 mm).

Closed-loop dosing
A variety of acoustic methods were explored to monitor
the DBAC HIFU dose in real time. Theoretical analyses,
literature review, and experimental test comparisons
were made for alternative methods, including ARFI,
harmonic motion imaging, thermal echo-strain imaging,
B-mode imaging of lesion formation, transient cavitation,
and others. Because the DBAC system was to achieve
coagulation through thermal mechanisms and because
bio-effects have been validated using thermal dose rela-
tionships based on tissue temperature history (e.g.,

Fig. 14 Estimated minimum available absorbed acoustic power as a
function of depth. Blue curve assumes power loss from attenuation
only (3 Tx’s, no equalization); red curve has attenuation and beam
steering losses (3 Tx’s, no equalization). The black curve assumes
attenuation and steering losses (6 Tx’s, beam equalization applied)

Table 1 Summary of the in vitro test bed objectives and results

Program milestone Phantom type

Objective Integrated Phantom
(D&L/targeting)

Result HIFU phantom (power delivery) Result

Minimum structure resolution (MSR) PVA vessel 0.6 mm diameter Met goal (2/2) NA NA

Minimum detectable velocity (MDV) PVA vessel 3 cm/s mean velocity Did not meet
goal (0/3)

NA NA

Min and max thermal dose (MTD) NA NA Non-feedback test 6 thermocouples
(ΔT: 33 °C≤ TD≤ 58 °C)

Met goal

Min and max depth of penetration (MDP) Min: 5 cm Met goal (1/2)
Met goal (3/3)

Min: 5 cm Met goal

Max: 12.5 cm (25-cm diameter
phantom)

Max: 12.5 cm (25-cm diameter
phantom)

Met goal

Maximum thermal skin dose (MTSD) NA NA Surface thermocouples (MTSD:
ΔTmax ≤ 20 °C)

Met goal

D&L on minimum radius of curvature (MRC)
phantom

3.75-cm depth bleeder in a 3.75-
cm radius phantom

Did not meet
goal (0/5)

3.75-cm depth in a 3.75-cm radius
phantom

Met goal

D&L algorithm Madsen w/PVA vessels Met goal NA NA

D&L to targeting communication Two thermocouples on vessel wall
to verify targeting

Met goal NA NA

Targeting to therapy power communication
and coordinated functioning

Closed-loop targeting and dosing
w/o human interaction

Met goal NA NA

Closed-loop targeting “Line and dot” measured Met goal NA NA

Closed-loop dosing RNN thermometry Met goal NA NA
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Sapareto [16] and Dewey [17]), expressed in cumulative
equivalent minutes at 43 °C, the use of tissue temperature
was preferred for DBAC dose monitoring.
To monitor tissue temperature, a recurrent neural

network (RNN) thermometry method was developed
[18–20] based on training algorithms to recognize
temperature-associated changes in echo signals re-
ceived from the heated regions where temperatures
were recorded by thermocouples (TC). By combining
multiple features of the echo signals (e.g., apparent tis-
sue displacement due to radiation force, thermal strain,
echo backscatter intensity changes, echo signal cross-
correlation coefficients, etc.), weighting these in time
and analyzing them in a neural network, estimated
temperature changes at the treated region could be re-
trieved in real time and more accurately than TSI
thermometry [20] alone.

In vitro test bed for DBAC cuff evaluation
A two-phantom approach was adopted for the in vitro
testing using (1) an “Integrated Phantom” (IntP) for
assessing D&L and automated closed-loop targeting and
dosing, including accuracy and speed, and (2) a thermal
dose limb phantom (“HIFU Phantom”) to assess ad-
equacy of HIFU power deposition while adhering to the
maximum skin temperature requirement.

Acoustic power deposition measurement
The therapy (HIFU) phantom was formulated from
Gelrite™ [21] tissue-mimicking material (TMM) and had
thermocouple (TC) clusters at specified locations represent-
ing bleeder targets, including prescribed depths (Fig. 10).
The MinTD objective was measured by the thermocouple

junctions at the TC clusters when focused power was de-
livered to the targets by multiple confocal Tx beams.
The risk of energy deposition outside of the target area,

the MTTD criterion, was evaluated via simulations and
hydrophone acoustic measurements. Also concerning
safety, the MTSD skin temperature resulting from a max-
imal dose was recorded by TC measurements on the sur-
face of a phantom. A target depth of 7.5 cm in a 15-cm
diameter phantom was dosed with 55-W acoustic/tile, the
maximum power/tile used in the in vitro test bed.

Bleeder detection and closed-loop targeting evaluation
The DBAC closed-loop treatment process, evaluated in
IntP tests, included: (a) detection of the bleeder by the
D&L subsystem (including characterizing its blood flow
waveform to classify it as a bleeder or non-bleeder); (b)
localizing the bleeder coordinates via the D&L subsys-
tem; (c) communicating these coordinates to the therapy
subsystem, (d) automatic selection of the most suitable
Tx arrays, (e) finalizing targeting by iterative adjustment
of the Tx foci location (using either ARFI or TSI
localization feedback); (f ) treating the bleeder using the
recruited Tx’s; (g) monitoring doses with acoustic therm-
ometry; and (h) controlling therapeutic power with
thermometry feedback; i.e., automatically shutting off
power upon tissue temperature reaching a pre-set
threshold value. The IntP was also used to evaluate the
MSR, MDV, MinDP, and MaxDP and to check and con-
firm that phantom size (MinRC and MaxRC) require-
ments were met.
The Integrated Phantom was made from an agar/gel-

atin mixture, incorporating aluminum oxide particle
scatterers and propanol concentration adjustments to

Fig. 15 DBAC cuff therapeutic power assessment using a HIFU phantom. a A 25-cm Gelrite phantom and (b) seven-paneled fully populated cuff
mounted on the phantom for MinTD (power delivery) assessments
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set the speed of sound property [22]. The IntP not only
had soft tissue acoustic and thermal properties but also
possessed representative mechanical tissue properties
(elasticity). Appropriate elasticity was required since tar-
geting was accomplished using HIFU beam focus
localization based on either ARFI imaging or (in the test
bed) TSI principles, and because the acoustic thermom-
etry methods were also dependent on tissue mechanical
properties. One limitation in the IntP testing was that its
TMM formulation could not withstand high tempera-
tures (Teod associated with full power thermal dosing),
so adjustments had to be made on the dosing require-
ments. Both the IntP and HIFU phantoms were tested in
each of three limb diameters: 25 cm, 15 cm and 7.5 cm.
As indicated in Fig. 11, each IntP incorporated a polyvi-
nyl alcohol (PVA) vascular tree with an undisclosed
number of both “normal” vascular bifurcations and
“bleeders.” Bleeders were PVA (10 %) vascular branches
[23] leading to flow ducts (tracts) that were vented to
atmosphere.

A blood-mimicking fluid (BMF) [24] was circulated in
the IntP vascular system with pressure and flow wave-
forms delivered by a cardiac simulation pump (Model
551838 Pulsatile Blood Pump, Harvard Apparatus, Hol-
liston MA, USA). At least two different flow configura-
tions were used for each IntP guided by three SD flow
velocity waveform images for each vessel/bleeder branch
location (waveforms at pre-branch [upstream], branch 1,
and branch 2). Thermocouples (0.075 mm, Type T) were
placed along the longitudinal axis of the bleeder
branches, oriented to face the skin surface, with the TC
junctions 20 mm downstream from the point of bifur-
cation with main vessel. The TC was attached to the
PVA vessel using ethyl cyanoacrylate adhesive. A single
metallic bead was also glued to each TC 1 cm down-
stream of the TC junction as a fiducial marker for
imaging. Two TC’s were used at each branch location, to
compensate for potential rotation of the vessels during
phantom fabrication. By standardizing the position of
the TC’s on the PVA vessels, no targeting coordinate
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Fig. 16 Sample thermal responses from multi-beam dosing in Test Bed HIFU phantoms. Results from the small (Panel a), medium (Panel b) and
large (Panels c and d) diameter phantoms are shown. Sample thermocouple ΔT temperature histories measured with DBAC cuffs on different-
sized phantoms at specific thermocouple clusters
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information was required. The vascular structure was
imaged by high-resolution x-ray computed tomography
(HRCT) prior to testing (Fig. 12), which enabled the
verification of the presence and location of the TC beads.
B-mode imaging and image registration was evaluated
with the assistance of cross-shaped fiducial structures
embedded in the IntP, and SD and P- and C-modes
required a BMF for blood flow imaging.

Results
Cuff dosing simulations
Acoustic, thermal, and fluid dynamic computational
simulations, combined with mechanical CAD models,
were used to guide the therapeutic acoustic dosing of
the cuff. A therapeutic frequency fc ≈ 1 MHz was
selected, optimizing between depth of penetration and
acoustic absorption for heating. The Tx’s foci lateral
dimensions (3 dB beam widths) were ≈1.0–3.7 mm (f# =
0.75–2.5), for small to large phantoms, respectively. By
executing rapidly scanned dithering patterns, tailored
heating patterns and laterally enlarged therapeutic
volumes could be achieved. Focal dithering patterns
were explored and optimized through acoustic and
thermal simulations and confirmed experimentally.
Separate dithering patterns were selected for three
different DBAC depth ranges: (a) ≤ 7 cm, (b) 7–10 cm,
and (c) ≥10 cm (Fig. 13). Rapid movement of the focus
(switching rate up to 10 kHz) between 12 dithering points
were chosen for focal depths ≤7 cm, and 9 points were
used at all other depths.
The total Tx power requirements were estimated based

on absorbed acoustic power occurring within 8 mm

diameter MTV volumes. Based on simulation, ≈4 W of
absorbed power at the target was found to achieve the
minimum ΔTeod = 33 °C after a 30-s dose. The lowest avail-
able (absorbed) power for targets at different depths in a
25-cm limb (worst case power requirement) is plotted in
Fig. 14. All curves were above this absorbed power thresh-
old at all depths. Experimentally, 3.5 W absorbed was
found sufficient for ΔTeod = 33 °C in the Gelrite TMM
phantoms. Intensity at the skin was limited to ≤6 W/cm2

to avoid skin burns (based on skin burn energy thresholds
of LaCoste et al. [25], scaled to the utilized tdose values).
The maximum power allowed from a single Tx was thus
determined to be 163-W acoustic.

In vitro test bed summary
The results of the in vitro performance evaluation are
shown in Table 1. The time consumed to install (wrap)

Table 2 Summary of in vitro therapeutic power (MinTD) results

Phantom Cluster
position

Cluster
depth
(cm)

Number
of Tx
tiles

HIFU focus (offset relative to center of cluster) (mm) Input
acoustic
power
(W)

Focal
intensity
(W/cm2)a

ΔT (°C)

X Y Z

7.5 cm Lower 3.75 2 −0.08 0.26 0.11 57.2 316 45–47

7.5 cm Middle 3.75 2 0.04 0.01 −0.02 56.4 316 49

15 cm Lower 5.5 3 0.55 −0.32 −0.83 98.2 316 39–55

15 cm Middle 4.5 3 0.21 −0.06 −0.05 83.8 316 48–51

15 cm Upper 7.5 2 NA NA NA 93.8 316 57–65b

15 cm Lower (B) 7.5 2 NA NA NA 83.9 316 35–42

25 cm Lower 12.5 3 0.12 −0.33 −0.3 167.0 316 43–49

25 cm Middle 8.0 3 −1.7 1.2 0.48 168.4 316 16–45c

25 cm Middle (B) 8.0 3 −0.74 −0.44 −0.02 144.7 316 42–48

25 cm Upper 5.0 3 −0.61 −0.04 1.0 134.0 316 55–62d

NA coordinates not available due to data recording error
aIntensity value spatially averaged over focal dithering pattern cross-section for each Tx beam focus then derated for attenuation along each beam path for
beams; Intensities for all foci then superposed
bAtypical curve shape with enhanced echogenicity observed in the TMM around the cluster
cCoordinate value entered incorrectly
dStrong oscillation present in TC readings; possibly indicating viscous heating artifact (see Fig. 16d above)

Table 3 Summary of D&L success rates

Sequence 7.5 cm 15 cm 25 cm

B/P-mode acquisition 8/8 2/3 4/6

Branch detection 7/8 3/3 2/5

Spectral Doppler (SD) acquisition 8/8 2/2 5/5

Bleed characterization 7/8 2/2 4/5

Tile recruitment 6/6 2/2 5/5

Target correction 4/6 2/2 4/5

Dose sequence 5/6 2/2 4/4

Dose feedback 5/5 2/2 3/4

Localization 0/5 2/2 1/4

Automation 4/7 2/3 3/5
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the cuff around the limb phantoms, including adding or
removing panels to adapt the cuff to limb sizes,
improved over the course of the testing: from ≈1.5 h
to <30 min. The cuff met weight limits, being 4.75 kg
in the monitored weigh-in of the final exam.

Power delivery
A seven-paneled DBAC cuff is shown in Fig. 15 installed
on a 25-cm diameter HIFU phantom. A representative
set of thermal responses to 30-s power doses for each
phantom size is shown in Fig. 16. The thermal dose cri-
teria (MinTD, ΔTeod = 33–58 °C) were substantially met
(Table 2), with minor qualifications (see Table 2 foot-
notes), including one bleeder site that had an excessive
ΔTeod (curve T6 in Fig. 16d). Assessing the risk of energy
deposition outside of the target area, the MTTD analysis
indicated the strongest side lobe to be −9 dB below the
main-lobe, producing no significant heating outside the
1 cm radius around the target. The measured skin
temperature resulting from a maximal dose was well
below the MTSD, with measured skin ΔTeod ≈ 0.6 °C.

D&L
Detection and localization was successful overall but
with better localization found in the larger phantoms (15
and 25 cm), as shown in Table 3. Branch detection (see
Fig. 17) was evaluated by the ability to identify the actual
vessel branches in the phantom (extra branches were
ignored unless a false bleeder). SD acquisition was
scored by the ability to obtain a blood velocity waveform

for every branch identified. Bleeder characterization re-
quired the correct identification (bleeder versus normal).
Localization refers to the bleeder being accurately tar-

geted and correctly dosed. The automation requirement
specified that the complete 2-button sequence proceed
without unexpected human interaction; i.e., the B- and
P-mode acquisitions, tile recruitment, target correction,
dose sequence, and dose feedback were all scored based
upon completing the sequence without problems (e.g.,
no SW lockups). The 2-button sequence was demon-
strated with only minor pre-declared “manual” steps be-
ing used (that being manual transfer of imaging probes
from one ACUSON SC2000 system to the other). Sixty
percent of the test runs were completed using full auto-
mation, and no system crashes occurred. Fully auto-
mated successful D&L and treatment of bleeders
occurred for single fast bleeders in the 25- and 15-cm
IntPs. This included a deep bleeder (11.8-cm depth) in a
25-cm IntP, a shallow bleeder (5.4 cm deep) in a 25-cm
IntP, and a minimum structural resolution bleeder (MSR
= 0.06 cm) in a 15-cm IntP. Successful targeting of dual
bleeders in the 25-cm phantom was demonstrated (both
at ≈5-cm depths), but one of these targets was dosed be-
yond the set IntP temperature limits. A triple bleeder in
a 15-cm IntP was also successfully completed (including
the MSR bleeder). At least two full-automation se-
quences were completed in the 7.5-cm IntP, but no
proper localizations were achieved in this sized
phantom.
As shown in Table 4, D&L did not meet time limit re-

quirements for three bleeders (i.e., <9 min), largely due
to increased image acquisition times. The total acquisi-
tion time for the 7.5-cm phantom was 5 min 40 s for
power Doppler image acquisition, with an additional
4 min for characterizing all bleeds (total = 9 min 40 s).
Similarly, D&L time for the 15-cm phantom was 11 min,
and for the 25-cm phantom was between 18 and 21 min.

Acoustic thermometry
Thermometry experiments were performed for RNN
algorithm training purposes in both TMM and ex vivo
livers (Fig. 18). A total of 251 datasets at different HIFU
power levels were obtained from IntP TMM (54) and
ex vivo bovine livers (197) and then processed offline.
Needle TCs or butt-welded TCs were inserted into the
tissue media to read and output the target temperatures,
which were acquired using a TC DAC (Model USB 2416;
Measurement Computing Corp., Norton MA, USA) at
54 Hz throughout the heating process.
Figure 19 shows representative performance of the

RNN algorithm [20], here compared to TSI as has been
used by others [26]. As indicated, the RNN approach ap-
pears superior to TSI in this application, particularly in

Fig. 17 D&L images in 25-cm Integrated Phantom. (Upper left)
Model derived from high-resolution CT scan showing the 4
branches, (center) power Doppler compounded volume. The white
arrows indicate branches that are detected (right) automatically by
the algorithm. The spectral Doppler (SD) waveform (lower) shows a
bleed detected at the location of the green marker. Resistive
index (RI) = 0.70
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the higher ΔT’s needed for a therapeutic range, and also
distributes error more equally across the entire range of
temperatures.

Closed-loop targeting
Closed-loop targeting was scored on the ability of the
targeting algorithm to iteratively converge the beam
focus from each recruited Tx to a location superimposed
on the detected bleeder location within a tolerance of
3 mm. The utility of the algorithm is illustrated in Fig. 20
for the 25-cm IntP and the seven-paneled cuff. After
selecting the target location on a bleeder track bifur-
cation, thermal dosing was performed twice with four
Tx’s; once using the D&L calculated foci (Fig. 20a), and
then done after closed-loop targeting correction
(Fig. 20b). As shown, none of the initial foci were suffi-
ciently close to the desired target location, whereas after
a single iterative correction, closed-loop targeting con-
verged for all four tiles to the desired target location.
The resulting RNN temperature distributions after

four-Tx dosing of 30 s, with and without closed-loop tar-
geting, is shown in Fig. 21. Without closed-loop target-
ing (Fig. 21a, b), the temperature images indicate
heating occurred across a large volume, particularly in
elevation, and deeper than the target location. After
closed-loop targeting correction convergence (Fig. 21c,

d), the temperature rise is better concentrated within a
smaller volume that also encompasses the target
location.
Figure 22 also demonstrates that without closed-loop

targeting, convergence mistargeting would result in less
concentrated energy delivery, decreasing the heating of
the bleeders.
Of 65 targetings, 12 were focused within the conver-

gence criterion after initial focusing (based only on D&L
coordinates). Closed-loop feedback converged 31 of the
remaining 53 foci to the target (58 %). It is noteworthy,
however, that after increasing the iteration limit from
three to five, the targeting convergence rate improved
from 9 of 22 (41 %) to 22 of 31 (71 %).

Closed-loop dosing
The IntP dosing control results are summarized in
Table 5. Closed-loop RNN acoustic thermometry

Fig. 18 Acoustic thermometry experimental setup. Test fixture configuration for acquiring ultrasound echo data during HIFU heating experiments
for thermometry data acquisition and RNN testing. Imaging and therapy interleave in sequence shown

Table 4 Acquisition times (s) during in vitro final exam

Phantom Number
of panels

Power Doppler
(average)

Bleeding
characterization

(average)

Total time (s)
(maximum)

7.5 cm 4 340 240 580

15 cm 5 425 240 665

25 cm 7 1020 240 1260
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monitored the temperature, and when reaching the ΔT
threshold, power shut-down was automatically triggered.
The ΔT threshold was based on the RNN spatial average
temperature within the MTV (8-mm region), and in all
tests power shut-off was reached prior to the fixed ex-
posure limit of 30 s. In general, the threshold-triggered
power shut-offs were well behaved, with 60 % of the
tests showing the peak TC end-of-dose temperatures
close to the dose threshold set points.

Registration: ToF
In using the development test tank (Fig. 8), the locations
of the sub-apertures estimated by ToF across water +
TMM (Gelrite) were, encouragingly, quite close to the
locations expected by the design specifications of the
tank. The method also included aberration correction
for refraction of the beam going through water layers
into the tissue media. Ix–Tx distances across the Gelrite
phantom, plus water jacket, were typically measured to

within 2 mm of ground truth. The orientation of each
Tx relative to an Ix could be measured to within 0.5° of
the array normal surface vectors.
In the final exam, ToF tests were only performed on the

25-cm IntP with the seven-paneled cuff. In one case, the
ToF test was done with only 20 of the 21 Tx tiles and five
of the six Ix’s being fully functional. In spite of this, the
ToF subsystem correctly identified the cuff as having
seven sides/panels, accurately estimated the acoustic vel-
ocity of the phantom TMM (at 1515 m/s) and the image
registration comparisons showed a maximal registration
error of less than 1 cm. The locations of the Ix’s and Tx’s
in this case, projected onto the YZ plane in the reference
imager (Ix0) frame, are shown in Fig. 23.

Discussion
Power delivery
Importantly, the thermal dose criteria (MinTD) were met
in all tests, covering all three sizes of HIFU phantoms,

Fig. 19 RNN versus thermal strain acoustic thermometry. Mean absolute error of one RNN method versus TSI—using third-order polynomial fitting).
TSI average strain = −0.23 ± 0.05 % to −0.81 ± 0.06 % for ΔT = 2.3 ± 1.1 to 7.71 ± 3.2 °C, with a calculated linear coefficient (λ) = 0.0012 °C−1. Thus, for
ΔT > 10 °C, TSI underestimated ΔT by ≈33 %. RNN thermometry average errors E ≈ 2.5 °C for ΔT = 0 to 10 °C and E ≈ 3.8 °C for ΔT = 11 to 30 °C
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with only minor qualifications. Due to the focal gain
allowed by the use of multiple Tx’s treating a single tissue
target, the measured peak skin temperature resulting from
a maximal dose was far below the skin temperature limit.
Further, the MTTD analysis showed no significant heating
outside the 2-cm region around the target.

D&L
In vitro results were positive and 1-button D&L automa-
tion workflow was verified in all tests, with a total of
65 % successful automatic localizations being shown in
the final exam. Satisfying the MSR, two of three small
(0.6 mm diameter) bifurcations were successfully identi-
fied and treated in the 15-cm phantom. While the first
MSR branch was not detected successfully, this was
likely because of the BMF scatterer dilution. The subse-
quent MSR bleeds were automatically detected after cor-
recting the BMF concentration. As shown in Table 1,
meeting the slow flow requirements (MDV = 3 cm/s)
were challenging in that the Ix’s were not sensitive
enough (via PW Doppler). Further, the resistive index
criterion was less helpful with in vitro slow bleeds, as
they often had irregular flow waveforms. In the future,
these cases could be addressed by handling the slow
bleed waveform as a special case, not using RI for
bleeder characterization. Detections of flows 3–4 cm/s
were achieved in the IntPs using a 2D imaging probe
with more penetration (Siemens 6C2 transducer).
Although bleeder detection was possible in the small

IntPs (7.5 cm), no successful localizations were scored in
them. It is speculated that bifurcation localization was less

precise due to the more narrow branching angles in the
small limb phantom (see left panel in Figs. 12 and 24),
noting that the algorithm had been trained on the larger
IntPs. By determining the actual coordinates of the
“bleeder” TCs via “thermal peaking” (where the Tx beam
focus is auto-scanned until power pulses maximize the TC
response), it was confirmed that systematic errors had oc-
curred in the automated D&L-reported target coordinates.
Also complicating the small limb D&L was the fact that
the four-paneled cuff had imperfect Doppler coverage.
The transducers that had the best image volume overlap
were also the ones facing each other, so where one had
a bad Doppler angle on a vessel, the other contralateral
transducer likely had a similar Doppler blind spot. So-
lutions going forward include using more and smaller
imaging transducers for the small limb cuff.
There were two cases where the Tx beam raised

the temperature at a bleeder TC but not to the re-
quired minimum level. Positional checks of TC junc-
tions via thermal peaking showed the beams to be
within approximately 5 mm of the center of TC
junction. A shift of 2–3 mm of the TC junction in
the wrong direction could have put it just outside
the 8-mm spherical range. Post study inspections in-
dicated the TCs were nominally in the right loca-
tions, but because the junctions were not visible on
x-ray, their exact locations could not be determined
with high precision.
Regarding not meeting D&L time limits, for large phan-

toms and slow bleeders, the acquisition required an in-
crease in the spatial resolution over that of the commercial

Fig. 20 Targeted beams before and after closed-loop correction. Detected targeting beam axes from four therapy tiles (seven-sided cuff on 25-cm IntP),
whose aperture centroids are marked (black dots). a The initial D&L-determined axes and b axes after a single targeting-correction iteration
(each converging laterally to well within the 3-mm targeting tolerance)
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4Z1c. The imaging sequencing was, therefore, modified
for these cases to use a higher line density. This required
sequentially acquiring sub-volumes (fragments) of power
Doppler image volumes (18 per probe) and then recon-
structing the full volume from these sub-volumes in a
post-processing step. This stretched the acquisition time
budget to ≈18 min for a 25-cm phantom. For small phan-
toms, if “extra” bifurcation sites were detected (red arrows
on upper right in Fig. 24), increased D&L processing also
resulted (in this example, an increase of 120 s resulted). In
the future, processing times can be improved by increas-
ing the image-former memory, modifying image-former
SW and small phantom D&L algorithm training.

Closed-loop targeting
Closed-loop targeting was necessary for many treatments,
particularly when multiple foci coming from the sur-
rounding circumferential set of Tx apertures had to be
coincident. It is encouraging that target localization was
determined to be within 2.3 mm laterally of the true target
and repeatable to within a beam angle of 1°. Closed-loop
targeting and therapy automation were largely demon-
strated in all IntPs. A few pre-agreed upon manual
(“human in the loop”) steps were required, principally the
manual switching of 4Z1c transducers between the two
imaging systems after D&L but before the Start Therapy
button was pushed.

Fig. 21 Temperature rise (°C) contour maps due to 30-s dosing under targeting conditions of Fig. 20. (a) and (b) are D&L location-targeted
beams, while (c) and (d) show heating after iterative correction of the beam foci. The desired target location is represented by the white circle
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Closed-loop dosing
To our knowledge, the RNN acoustic thermometry
method implemented was its first use in thermal ther-
apy. The accuracy of the RNN temperature estimates,
over a wide range of dose exposures in ex vivo bovine
livers and TMM phantoms, was encouraging. The RNN-

estimated temperatures largely coincided with or were
close to the readings from TCs. From the 2D temperature
maps, it was observed that the RNN algorithms were able
to locate foci and beam axes of the Tx beams and were
somewhat reliable when used to shut down power based
on pre-set temperature threshold values.

Table 5 Summary of closed-loop targeting and feedback-controlled therapy

Phantom
(by size)

Bleeder
location

Number
of tiles

Targeting
convergence
success rate

Dose
time (s)

ΔT (eod): set point dosing
threshold (temperature) (°C)

ΔT (eod): average RNN
estimated temperature rise) (°C)

ΔT (eod): (TC measured
temperature rise) (°C)

7.5 cm Lower 3 2/3 11.2 5 5 1.5a

Middle
2

2 2/2 8.3 5 5.8 n/ab

Middle
3

2 0/2 8 5 5.1 2.2

15 cm Middle 4 3/4 25.2 15 15.2 13.5c

Upper 3 3/3 11.3 5 5.1 12/4d

Lower 3 2/3 15.1 5 4.5 3

Lower 2 2 2/2 13.2 5 6.8 6

25 cm Middle 3 1/3 15 5 6 4.5

Middle
2

3 2/3 12.6 5 5.7 2

Middle
3

2 1/2 9.3 5 6 4

Lower 2 2/2 18.75 5 5.5 30/10e

aInsufficient ΔT; thermal peaking cross-check revealed foci off the TC by X = 3 mm, Y = 5 mm, and Z = 6 mm
bAbnormal ΔT measured (decreasing); wiring check found no error. High-power dose shot used; damaged PVA vessel; dissection was needed to confirm the loca-
tion of TC and condition of the vessel branch
cThe first experiment; ΔT threshold = 15 °C and resulted in phantom vessel damage; subsequent Δ thresholds set to 5 °C
dTC measured oscillatory temperature curves. Speculate multiple beams struck TC producing varying viscous heating artifact
eTC showed a smooth ΔT rise to 30 °C on one TC and an oscillatory ΔT response on the other TC

Fig. 22 Thermal response before and after targeting corrections. Temperature rise measured at the target location from a 22-s four-Tx dose. After
closed-loop targeting (green curve), the temperature rise at the desired focus is greater than without closed-loop targeting (blue curve)
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The closed-loop dosing did exhibit some atypical be-
haviors deserving mention. For example, the proximity
of vessels to the focal target region may have biased the
spatial-average temperature estimates downward, likely
due to acoustic distortions and/or cooler temperatures
in the vessel lumen. In the most extreme case, the
thermometry signal (averaged over the MTV volume)
triggered power-off at ΔT = 5.5 °C (threshold set at
ΔT = 5 °C), but the TC measured the vascular target
at ΔT = 30 °C (Table 5, dose time = 18.75 s in 25-cm
phantom). The TC signals had no obvious artifact and
impedance tests and post-test dissection suggested the
TCs were functioning properly. The RNN thermom-
etry image in this case revealed high temperatures at
the periphery of the target volume but a low-ΔT void
in the central target area, likely the vessel lumen,
supporting the notion of a bias due to temperature
spatial averaging.

Registration
Understanding and defining the spatial relationship of
the therapy arrays to the tissue space, to each other, and
to the imaging arrays are needed for targeting integrity.
The registration solutions pursued (image-based, fiber
optic Shape Tape, and time-of-flight methods) were

compared in terms of accuracy, image region of interest,
processing time benefit, and cuff weight limitations.
D&L and image-based registration have no weight pen-
alties, and image registration accuracy was good. ToF
also had the advantage of no system weight and pro-
duced reasonable position and orientation information
on Tx’s and Ix’s. Fiber optic cuff-shape tracking was used
to accelerate image registration of the other two
methods and did provide suitable initial estimates for
cuff array position and orientation tracking, but its
weight was a disadvantage. For this reason, the fiber
optic hardware was not used in the test bed configur-
ation of the cuff. ToF is most advantageous where highly
variable cuff panel orientations are involved (as for real
human limb treatments). The invariant geometries of
the test bed cylindrical phantoms, however, were such
that ToF registration acceleration benefit was not signifi-
cant, so ToF was not integrated into the test bed DBAC
system functionality. Successful ToF performance was
demonstrated, however, laying the groundwork for its
use in future cuff or similarly flexible HIFU systems.

In vitro test bed facilities
Test specifications and DBAC device principles re-
quired the development of a variety of complex IntP

Fig. 23 ToF imager and therapeutic array position and orientation projections. “Limb” cross-sectional view of Ix and Tx locations in Ix0’s coordinate
system (in vitro test bed test, 25-cm Integrated Phantom); blue lines represent Tx’s and red lines represent Ix’s
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and HIFU phantoms, along with their instrumentation
and test protocols. The phantoms and test methodology
worked well in the majority of cases in the final exam.

Summary and conclusion
A research prototype cuff system was designed and fab-
ricated to meet many of the challenging performance
requirements of DBAC for battlefield trauma. The pro-
ject had an accelerated development calendar which
also limited the opportunity for multiple practice test
sessions. The device was evaluated in a witnessed and
refereed in vitro exam series. Requiring only minor
trouble-shooting during testing, most DBAC cuff per-
formance requirements were met, including cuff
weight, power delivery (MinTD), targeting accuracy,
skin temperature limit (MSTD), and autonomous oper-
ation (limited to two “button” commands; although a
few manual steps were permitted). The cuff structure
proved strong enough to support arrays, while being
mechanically flexible and adaptable to the limb phan-
tom size range, and also meeting the important cuff
weight objective (≤4.8 kg).
Central to project success was the development and

fabrication of compact, lightweight high element-
density therapeutic arrays (Tx), capable of significant
steering, rapid, precise focal scanning and high-power
delivery. In light of the number of elements per array,
the architecture allowed simplified electrical drive and

control connections, a result of the electronic and
transducer fabrication processes developed, including
ASIC-on-flex design and construction. Also key was
the availability of commercial wide-sector volume 3D
imaging matrix array probes (Ix). The final cuff de-
ployed 21 Tx’s and six Ix’s, for full coverage of the deep
bleeder target tissue volume without the need for
mechanical motion in the cuff.
“Two-button automation” (to launch D&L and therapy

processes) was achieved, but in some tests required a
few discrete manual steps since system SW integration
had not been completed by the final exam date.
D&L, the first step in the DBAC treatment, inte-

grated several functions: volumetric stitching to com-
pound the images (overlapping P- and B-mode
volumes) from all Ix’s in the cuff, and automatic
image processing algorithms that enabled localization
and characterization of the bleeders. D&L bleeder/
non-bleeder classification was reliable via spectral
Doppler measurement of resistive index, except in
low flow bleeders. Registration was enabled using 3D
image registration, fiber optic shape sensors, and ToF
triangulation methods, complementary approaches
with the potential to accelerate D&L image volume
compounding.
D&L challenges included inferior bleeder localizations

in the smallest diameter limbs, likely because of the nar-
row vascular branching angles in the 7.5-cm phantoms
compared to the training phantoms. Also problematic
was the detection of the slowest flow rate bleeders, in
part due to Doppler sensitivity. The need to modify the
imaging probe sequence, increasing the line density to
improve 4Z1c imaging resolution, came at the cost of in-
creased image acquisition times, exceeding D&L proced-
ure time limits. In the future, re-optimization of the
imager software for this application, supplemental algo-
rithm training, plus adding more system memory should
improve these results.
Closed-loop targeting was demonstrated, with target-

ing convergence for in vitro bleeders improving as the
focus iteration algorithm was adjusted with experience,
ultimately converging 20 of 31 targets. Closed-loop dos-
ing was also operational, with control of therapy power
shut-off triggered by pre-set IntP tissue ΔT thresholds.
Key closed-loop technologies included RNN acoustic
thermometry for dosing, thermal strain imaging of the
Tx beam focus for targeting, and refined SW algorithms
combining image processing with interactions between
the Ix and Tx subsystems.
Although not detailed here, significant effort went into

the development of the test phantoms (IntP and HIFU
types) and the test protocols themselves, including gener-
ating multiple TMM formulations, doing material
characterization studies, fabrication method improvement,

Fig. 24 Small limb phantom bleeder branch detection. From 7.5-cm
phantom test in the final exam: upper left is CT scan model, center is
P-mode volume, showing two bifurcations, and right figure shows
D&L results, here with two extra branches (red arrows). Lower figure
is the spectral Doppler (SD) signal at the green marker (blood
velocity waveform)
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and instrumentation development. Although some minor
phantom variability occurred (e.g., fragility of TC’s and
PVA vessel thermal sensitivity), overall, the tests were well
executed and reliable.
In the in vitro device development effort, a majority of

successful DBAC system milestones were delivered.
After the in vitro test bed final exam, the project moved
forward to the development and testing of DBAC in an
animal model of limb bleeding (see companion Part II
article [15]).

Endnotes
1This research was, in part, funded by the US Govern-

ment. The views and conclusions contained in this docu-
ment are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the US Government.

2The MinTD lower threshold (ΔT ≥ 33 °C) was defined
based on experience and literature indicating Teod ~70 °C
(33 °C above 37 °C core) were associated with hemostasis
in dose exposures sought in this program (30–60 s). To
maintain safe control under automated treatment, tis-
sue boiling was to be avoided, thus a maximum of 95 °C
was stipulated (i.e., ΔTeod ≤ 58 °C from 37 °C core
temperature).

3The therapeutic volume dimension for a discrete dose
was that corresponding to the narrowest dimension
across the coagulation lesion, Wmin, which exceeds the
static acoustic focus waist dimension (e.g., FWHM of
the effective beam), accounting for a margin due to ther-
mal conduction. Wmin minimum size was based on the
size of the vessel treated and on targeting tolerance
(error) margins. The largest artery encountered was the
femoral artery (D ≈ 5 mm), and a targeting uncertainty
of ±1.5 mm was determined, thus the therapeutic vol-
ume was set at 8 mm.

4A maximum Teod = 52 °C was prescribed (i.e., ΔTeod ≤
20 °C from baseline skin temperature of 32 °C), approxi-
mately corresponding to skin burn threshold tempera-
tures for the acoustic dose exposure time range used.
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