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Background/introduction

In magnetic resonance guided focused ultrasound
(MRgFUS) brain applications the fully insonified field-of-
view (FOV) is ideally monitored. This can be achieved by
k-space subsampling and using a dedicated reconstruction
method, such as the previously described model predictive
filtering (MPF) method.[1] MPF utilizes the Pennes Bio-
heat transfer equation (PBTE) and tissue thermal and
acoustic properties determined from a low-power pre-
treatment heating (which ideally does not deliver any ther-
mal dose, i.e. AT<2°C). The accuracy of the determined
tissue parameters, and hence of the MPF reconstruction,
depends on the low power heating. In this work we inves-
tigate dynamical adjustment of model parameters during
heating for improved MPF temperature measurement
accuracy.

Methods

All imaging used a 3D segmented EPI pulse sequence
(table 1) with variable density k-space subsampling
(R=7)[2] on a 3T MR scanner (Tim Trio, Siemens
Healthcare). FUS heating was performed in a gelatin
phantom with a 1IMHz 256 elements phased array
transducer (Imasonic/IGT). In MPF a temperature for-
ward prediction (based on PBTE) is used in conjunc-
tion with sub-sampled k-space data to estimate the
current temperatures. In this work the tissue acoustic
(power density, Q) and thermal (conductivity, k) prop-
erties were determined with recently published meth-
ods[3,4] from an average of 5 low power heatings, and
the MPF reconstructions were compared to fully
sampled “truths.” Temperature maps were calculated
with the PRF shift method. The subsampled data was
reconstructed with three implementations of the MPF
algorithm:
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1. No adjustment The original implementation, using
fixed values of k and Q[3,4] for all time-frames.

2. Best current estimate Implementation where Q from
1) is iteratively adjusted in each time-frame when the US
is on, and k from 1) is iteratively adjusted when the US is
off, so that the difference between the forward predicted
model-only temperatures and the MPF estimates are
minimized in each dynamic time-frame, figure 1.

3. Final adjustment Here the average values of Q and
k achieved from all time-frames in 2) are used in the
reconstruction. Since the average values of Q/k are used,
the data cannot be reconstructed until all data is
acquired, hindering real-time reconstruction.

Temperature measurement accuracy was evaluated by
investigating a local (hottest voxel) and a global (all voxels
with AT>20°C) root-mean-square-error (RMSE).

Results and conclusions

The mean and STD of the 5 low power heatings were
2.10+0.10°C, resulting in a negligible thermal dose (0.002
for hottest voxel). Figure 2 shows the hottest voxel vs.
time for fully sampled “truth” and the three MPF imple-
mentations, and table 2 shows the RMSEs. A 31-50%
reduction in RMSE can in the present study be achieved
by dynamically adjusting Q and k during the heating.
Achieving accurate estimates of tissue acoustic and ther-
mal properties can be challenging from very low power
heatings resulting in only a few degrees temperature rise.
In this work we have shown that increased temperature
measurement accuracy can be achieved by dynamically
adjusting the model parameters as the heating progresses.
Future work will aim at adjusting both Q and k during
the heating by incorporating estimates of the focal spot
FWHM.
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Table 1 MR and US parameters used for the 5 Low Power heatings (to estimate Q and k), for the fully sampled
“truth,” and for the subsampled MPF heatings.

TR/TE [ms] Resolution [mm] FOV [mm] EPI BW [Hz/px] FA [deg] Tacq [s] us
Low Power Heating 22/11 1.15x1.15x2.50 147x96x45 7 752 15 48 3W
28.18s
Fully Sampled “Truth” 22/11 1.15x1.15x2.50 147x96x45 7 752 15 48 40W
28.18s
MPF 22/11 1.15x1.15x2.50 147x110x135 7 752 15 24 40W
28.18s
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Figure 1 lteratively updating MPF temperatures by adjusting Q/k. Blue dots are iterations for each dynamic time - larger adjustments are
needed when US is turned on/off (black arrows). Red line indicates temperatures as obtained with the optimized parameters.
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Figure 2 Temperature rise vs. time for fully sampled “truth” compared to the three implementations of the MPF algorithm. Mean and STD of
three separate heatings are shown. Increased accuracy is achieved when Q/k are dynamically adjusted throughout the heating.
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Table 2 Mean and standard deviation (STD) of the RMSE for three repeated 40W heatings, for the three
implementations of the MPF algorithm.

RMSE RMSE
Hottest voxel AT>20°C
1) No adjustment 1.37+0.03 1.89+0.25
2) Best current estimate 0.69+0.03 1.26+0.31
3) Final adjustment 0.94+0.04 1.24+0.25
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