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Abstract

Background: Volumetric thermometry with fine spatiotemporal resolution is desirable to monitor MR-guided
focused ultrasound (MRgFUS) procedures in the brain, but requires some form of accelerated imaging. Accelerated
MR temperature imaging methods have been developed that undersample k-space and leverage signal correlations
over time to suppress the resulting undersampling artifacts. However, in transcranial MRgFUS treatments, the water
bath surrounding the skull creates signal variations that do not follow those correlations, leading to temperature
errors in the brain due to signal aliasing.

Methods: To eliminate temperature errors due to the water bath, a spatially-segmented iterative reconstruction
method was developed. The method fits a k-space hybrid signal model to reconstruct temperature changes in the
brain, and a conventional MR signal model in the water bath. It was evaluated using single-channel 2DFT Cartesian,
golden angle radial, and spiral data from gel phantom heating, and in vivo 8-channel 2DFT data from a FUS
thalamotomy. Water bath signal intensity in phantom heating images was scaled between 0-100% to investigate its
effect on temperature error. Temperature reconstructions of retrospectively undersampled data were performed
using the spatially-segmented method, and compared to conventional whole-image k-space hybrid (phantom) and
SENSE (in vivo) reconstructions.

Results: At 100% water bath signal intensity, 3×-undersampled spatially-segmented temperature reconstruction
error was nearly 5-fold lower than the whole-image k-space hybrid method. Temperature root-mean square error in
the hot spot was reduced on average by 27× (2DFT), 5× (radial), and 12× (spiral) using the proposed method. It
reduced in vivo error 2× in the brain for all acceleration factors, and between 2× and 3× in the temperature hot spot
for 2-4× undersampling compared to SENSE.

Conclusions: Separate reconstruction of brain and water bath signals enables accelerated MR temperature imaging
during MRgFUS procedures with low errors due to undersampling using Cartesian and non-Cartesian trajectories. The
spatially-segmented method benefits frommultiple coils, and reconstructs temperature with lower error compared to
measurements from SENSE-reconstructed images. The acceleration can be applied to increase volumetric coverage
and spatiotemporal resolution.

Keywords: Temperature imaging, Image reconstruction, Proton resonance frequency-shift, Thermometry,
MRI-guided focused ultrasound

*Correspondence: will.grissom@vanderbilt.edu
5Institute of Imaging Science, Vanderbilt University, 1161 21st Ave S, 37232
Nashville, USA
6Department of Biomedical Engineering, Vanderbilt University, 21st Ave S,
37232 Nashville, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40349-017-0092-0&domain=pdf
http://orcid.org/0000-0002-3289-1827
mailto: will.grissom@vanderbilt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Gaur et al. Journal of Therapeutic Ultrasound  (2017) 5:13 Page 2 of 11

Background
Over the last ten years, MR-guided focused ultrasound
(MRgFUS) has emerged as a promising treatment modal-
ity for several neurological conditions. Targeted thermal
heating delivered byMRgFUS is being used to treat condi-
tions such as essential tremor [1–3], chronic neuropathic
pain [4], Parkinson’s disease [5], obsessive compulsive dis-
order [6], and brain tumors [7, 8]. In cases targeting
subcortical areas near the center of the brain, the potential
benefits of MRgFUS therapy are promising. With no inci-
sions, the risk of damage to surrounding brain structures
and cortical tissue is dramatically lower than with inva-
sive procedures. For this reason, MRgFUSmay be the only
treatment option in otherwise inoperable situations [7, 9].
Current clinical transcranial MRgFUS systems com-

prise a hemispheric 1024-element ultrasound phased
array transducer with 30 cm diameter (Insightec ExAb-
late Neuro 4000; Insightec Ltd, Haifa, Israel). The patient’s
head is positioned in the device and immobilized by a
stereotactic frame. Degassed water fills the space between
the transducer and the head, and is contained by a rubber
membrane that allows direct contact between the water
and scalp [9]. Figure 1a illustrates a cross-sectional view
of the transducer and water bath positioned around the
patient’s head. The water bath couples ultrasound energy
between the transducer and the body, and is chilled to
15-20 °C and circulated after each sonication to dissipate
heat from the head. Although active water circulation is
performed between imaging sequences, residual circula-
tory flow and acoustic streaming effects during sonication
causemotion of the water bath during imaging. This intra-
scan motion of the water bath results in artifacts with a
ripple-like appearance that alias into the MR images and
temperature maps.
The current clinical temperature monitoring protocol

for transcranial MRgFUS dynamically images a single 2D
slice. Increased spatial coverage is needed to enable moni-
toring of off-target heating and to evaluate new treatment
targets [10, 11], but this will require some form of accel-
erated temperature imaging to acquire more data without
compromising frame rate. Accelerated temperature imag-
ing could also reduce temperature errors due to intra-scan
water motion artifacts. However, conventional MRI scan
acceleration approaches such as parallel imaging [12, 13]
and simultaneous multi-slice imaging [14–16] require a
dense array of receive coils to be placed near the head, so
they are of limited utility inMRgFUS applications because
coil placement is restricted by the transducer. As will be
shown here, the sensitivity profiles of coils placed outside
the transducer (far away from the head), are not suffi-
ciently distinct in the brain to provide artifact-free images
and temperature maps at useful scan acceleration factors
using conventional parallel imaging reconstruction. Spe-
cialized coils that can be integrated with the transducer

are in early stages of development, and may offer mod-
est parallel imaging acceleration [17–19]. However, inte-
grated coils are not yet widely available, and may still
benefit from combination with other accelerated imaging
approaches such as the one described here.
Multiple groups have developed accelerated tempera-

ture mapping methods from undersampled k-space data
that exploit temporal correlations between and among
baseline (pre-treatment) and dynamic (during treatment)
images to suppress undersampling artifacts [20–22].
However, adaptations of these methods for brain applica-
tions [10, 11] could be affected by signal variations that are
not accounted for in signal models, and are not captured
in baseline images due to their random dynamic behav-
ior (Fig. 1b). This breaks temporal correlation assump-
tions between images collected during a single focused
ultrasound sonication, and results in temperature map
artifacts.
We present a spatially-segmented approach for recon-

structing temperature maps in brain MRgFUS, in which
we separately estimate a water bath image without a base-
line, and a temperature map in the brain using the k-space
hybrid method with a baseline (Fig. 1c). We compare the
approach with temperature maps calculated by the con-
ventional whole-image k-space hybrid method and (when
multiple receive coils were used) by phase difference after
SENSE image reconstruction [12, 22]. Gel phantom heat-
ing data are evaluated using Cartesian and non-Cartesian
k-space sampling. We also investigate the effect of reduc-
ing the water bath signal intensity on the temperature
reconstruction performed with and without spatial seg-
mentation.

Theory
Signal model
The spatially-segmented thermometry algorithm recon-
structs both a brain temperature map and a water bath
image. Inside the brain, the k-space hybrid model is
applied which incorporates baseline image data, while no
image model is applied in the bath. Given a set of in-brain
image voxels B, the signal is modeled as:

yi =
∑

j∈B
fje−(αj+ıθj)e−ı�ki·�xj +

∑

j/∈B
f̃je−ı�ki·�xj + εi, (1)

where yi is a complex-valued k-space data sample acquired
at location �ki, the �xj = (xj, yj, zj) are spatial locations, the
fj � f (�xj) are samples of the phase drift-compensated in-
brain baseline image, the f̃j � f̃ (�xj) are samples of the
current bath image, the αj � α(�xj) are samples of a heat-
induced image magnitude attenuation map, the θj � θ(�xj)
are samples of the heat-induced phase shift map, ı =√−1, and the εi are i.i.d. complex Gaussian noise samples
[22, 23]. Here, θj = αj = 0 is assumed for j /∈ B.
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Fig. 1 Overview of transcranial MRgFUS setup, treatment images, and reconstruction model. a During MRgFUS treatment, the patient’s head is
immobilized in the transducer and circulating water bath. b The water bath signal exhibits random dynamic changes during sonication (arrow
indicates sonication target in gel phantom). c The proposed spatially-segmented reconstruction model for undersampled brain MRgFUS, which
separately estimates a water bath image without a baseline, and a temperature map in the brain with a baseline. In the proposed method,
undersampled dynamic data are reconstructed using the k-space hybridmethod in the brain and a conjugate gradient (CG) method in thewater bath

The hybrid referenceless and multibaseline thermome-
try model [24] is enforced in the brain, as:

fj =
⎛

⎝
Nb∑

l=1
bl,jwl

⎞

⎠ eı{Ac}j , (2)

where Nb is the number of complex baseline brain images
b reconstructed from fully-sampled k-space data acquired
prior to treatment, the wl are baseline image weights, A is
a matrix of polynomial basis functions, and c is a vector of
polynomial coefficients. Using a weighted combination of
baseline images allows robust thermometry over a range
of tissue positions and has previously been shown to ben-
efit brain thermometry for MRgFUS [25], though a single
baseline will be used in the present work. Background
phase drift is modeled by the low-order polynomial basis
functions in the matrix A, to account for spatially-smooth
dynamic changes in the magnetic field, such as result from
B0 field drift and respiration. Incorporating this model for
the baseline image, Eq. 1 can be written as:

yi =
∑

j∈B

⎛

⎝
Nb∑

l=1
bl,jwl

⎞

⎠ eı{Ac}j e−(αj+ıθj)e−ı�ki·�xj

+
∑

j/∈B
f̃je−ı�ki·�xj + εi.

(3)

Figure 1c illustrates the overall undersampled dynamic
image model. Brain voxels are defined using a user-
defined region of interest (ROI) mask. As the patient
is immobilized in the scanner, preventing translational
motion during treatment, the ROI can be defined once for
each treatment session.

Problem formulation
The signal model (Eq. 3) is fit to acquired k-space data
contained in a vector ỹ by solving the following optimiza-
tion problem:

minimize 1
2

∥∥∥ỹ − y(w, c,α, θ , f̃ )
∥∥∥
2

2
+ λ‖α‖1 + λ‖θ‖1

+ βR(α + ıθ) + ηR(f̃ ),
subject to α ≥ 0

θ ≤ 0∑Nb
l=1 wl = 1

w ≥ 0,
(4)

where ‖·‖1 is the �1 norm, λ is an �1 regularization param-
eter that controls the sparsity of α and θ , and R(·) is a
second-order finite differencing spatial roughness penalty
with regularization parameters β and η that control the
smoothness of α, θ , and f̃ [22, 26]. This problem is solved
by alternately updating the water bath image, and the
brain image model parameters, as described next.

Algorithm
The following alternating minimization algorithm is used
to solve the problem in Eq. 4, given initial estimates of
w, c,α, θ , and f̃ :
1: repeat
2: Update the water bath image f̃ , by solving:

minimize 1
2

∑Nk
i=1

∣∣∣ỹ¬B

i − ∑
j/∈B f̃je−ı�ki·�xj

∣∣∣
2 + ηR(f̃ ),

(5)

where Nk is the total number of k-space samples,
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and ỹ¬B is the residual k-space signal due to the
water bath:

ỹ¬B

i � ỹi −
∑

j∈B
fje−(αj+ıθj)e−ı�ki·�xj . (6)

This is solved using a conjugate gradient (CG) (sin-
gle receive coil) or CG-SENSE (multiple receive
coils) algorithm [26–28]. Upon updating f̃ , the
residual k-space signal ỹB due to the brain is
updated:

ỹBi � ỹi −
∑

j/∈B
f̃jeı

�ki·�xj , (7)

and used in the subsequent brain model parameter
updates.

3: Update w by solving the quadratic programming
problem:

minimize 1
2

∥∥∥ỹB − Gdiag
{
eı

({Ac}j
)
e−(αj+ıθj)

}
Bw

∥∥∥
2

subject to
∑Nb

l=1 wl = 1
w ≥ 0
j ∈ B,

(8)

where G is a discrete Fourier Transform (FT)
matrix and B is a matrix whose columns are the
baseline images b [22].

4: Update α and θ by solving the constrained mini-
mization problem:

minimize 1
2

∑Nk
i=1

∣∣∣ỹBi − ∑
j∈B fje−(αj+ıθj)e−ı�ki·�xj

∣∣∣
2

+ λ
∑

j |αj| + |θj|
subject to αj ≥ 0,

θj ≤ 0,
(9)

using a nonlinear conjugate gradient (NLCG) algo-
rithm as described in Ref. [22].

5: Update c using an NLCG algorithm that is similar
to the α and θ updates, but incorporates the basis
matrix A and applies no sparsity regularization or
sign constraints. This is further described in Ref.
[22].

6: until Stopping criterion met.
7: To eliminate temperature bias due to the �1 norm,

steps 1–6 are repeated with λ = 0, and α and θ are
only updated in voxel locations j in which θj is more
negative than a threshold value after Step 6.

Methods
Algorithm implementation
All reconstructions and evaluations were performed in
MATLAB R2015a (Mathworks, Natick, MA) on a work-
station with dual 6-core 2.8 GHz X5660 Intel Xeon CPUs

(Intel Corporation, Santa Clara, CA) and 96 GB of RAM.
Nonuniform fast Fourier transforms were used for recon-
structions from non-Cartesian k-space trajectories [28].
No parallelization was used beyond intrinsically multi-
threaded MATLAB functions.
Initial values for c,α, θ , and f̃ were set to zero. The initial

baseline image weights, w, were then determined accord-
ing to Eqs. 7 and 8. The algorithm stopping criterion was a
relative change in the objective function of less than 0.1%
between consecutive iterations. Estimates of image mag-
nitude attenuation and temperature shift were corrected
for bias due to the �1 norm in voxels where θ was more
negative than −0.01 radians, as described in step 7 of the
algorithm. The backtracking line search used in the NLCG
algorithm to update α and θ , described in Ref [22], exited
when the relative change in the objective function was less
than 0.1% and 0.001% between consecutive iterations for
phantom and in vivo datasets, respectively.

Experimental data
Phantom heating experiment
Imaging A gel-filled human skull phantomwas sonicated
by an Insightec ExAblate Neuro 4000 transcranial MRg-
FUS system (Insightec Ltd, Haifa, Israel) and imaged at
3T using the body coil (MR750, GE Healthcare, Wauke-
shaw,WI) [29]. 2DFT gradient echo images were collected
with 13 ms TE, 28 ms TR, 28×28×0.3 cm3 field of view,
256×128 acquisition matrix, and 30◦ flip angle. Images
and maps were reconstructed to a 128×128 matrix.

Effect of water bath signal level The signal intensity of
the image in the water bath was manually scaled to 0, 25,
50, 75, and 100% of its original value, prior to synthesiz-
ing the sampled k-space data, to evaluate the effect of its
presence in whole-image and spatially-segmented recon-
struction approaches. Temperature reconstructions were
performed for 3× undersampled 2DFT data as described
below.

Undersampled temperature reconstruction 2DFT
data from the phantom heating experiment were ret-
rospectively undersampled by 1, 2, 3, and 4× (128, 64,
42, and 32 total lines), with full sampling over 24 (2×)
and 17 (3 and 4×) central k-space lines. Fully-sampled
k-space data were also resampled onto golden angle (GA)
radial and variable density spiral trajectories using a non-
uniform fast Fourier transform [28]. GA radial data were
undersampled by 1, 2, 3, and 4× (202, 101, 67, and 50
lines). Spiral data were undersampled by 1, 1.5, 2, 2.4, and
3× (24, 16, 12, 10, and 8 interleaves) with full sampling
over the central 25− 30% of k-space). Figure 2a illustrates
k-space sampling patterns and CG image reconstructions
of the undersampled data for each trajectory.
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Fig. 2 Retrospective k-space sampling patterns and reconstructed
magnitude images. a Gel phantom heating. k-Space sampling patterns
for 3×-accelerated 2DFT and golden angle radial, and 2×-accelerated
spiral trajectories. The original image and images reconstructed from
each undersampled trajectory are shown below. b In vivo MRgFUS
treatment. k-Space sampling patterns for 2, 3, and 4×-accelerated
2DFT trajectories. The original image and images reconstructed from
each undersampled trajectory are shown below (intensity level
windowed to show image detail)

Temperature change maps of phantom heating were
reconstructed using the conventional whole-image k-
space hybrid method (“k-space everywhere”), and the
proposed method (“spatially-segmented”). Regularization
parameters for the k-space hybrid temperature model and
the number of iterations n used in the CG reconstruction
were: λ = 10−5, β = 10−5.25, and n = 2 for 2DFT; λ = 10−10,
β = 10−4.4, and n = 4 for GA radial; and λ = 10−20, β =
10−20, and n = 16 for spiral. The ROI corresponding to
the gel phantom brain was selected from a fully-sampled
image. An 8×8-voxel square ROI centered on the tem-
perature hot spot was defined to calculate mean and peak
temperature changes and temperature error. Root-mean-
square error (RMSE) was also computed between the
reconstructed and fully-sampled images in the brain and
hot spot ROIs.

MRgFUS thalamotomy
Imaging A patient received MRgFUS thermal ablation
treatment at 3T (Signa Excite, GE Healthcare, Milwau-
kee, WI; ExAblate Neuro, Insightec Ltd., Haifa, Israel) as

part of a chronic neuropathic pain treatment study at the
University Hospital of Zurich. Full informed written con-
sent was obtained prior to the treatment. 2DFT gradient
echo images were collected with an 8-channel receive
coil that wrapped around the outside of the transducer
(RAPID Biomedical, Rimpar, Germany), a 13 ms TE, 28
ms TR, 28×28×0.3 cm3 field of view, 256×128 acquisition
matrix, and 30◦ flip angle.

Undersampled temperature reconstruction Images
and maps were reconstructed to a 128×128 matrix and
retrospectively undersampled by 2, 3, and 4× (64, 42, and
32 lines), with full sampling over 32 (2×) and 17 (3 and
4×) central k-space lines. SENSE coil sensitivity maps
were estimated by reconstructing the average k-space
data across dynamics and dividing by the sum-of-squares
image [12]. Figure 2b shows k-space sampling and SENSE
image reconstructions of the undersampled data for each
acceleration factor.
Temperature maps were calculated by phase difference

between baseline and dynamic SENSE-reconstructed
images (“SENSE everywhere”), and using the segmented
method with CG-SENSE reconstruction of the water
bath image (“spatially-segmented”). Temperature maps
derived from the SENSE-reconstructed images incorpo-
rated the background phase drift correction estimated
by the spatially-segmented k-space brain model. k-Space
hybrid regularization parameters and iterations per CG-
SENSE bath image update were: λ = 10−6.265, β = 10−20,
and n = 2. An ROI mask of the brain mask was selected
from a fully-sampled baseline image. A 4×4-voxel square
ROI centered on the temperature hot spot was defined to
calculate mean and peak temperature changes. RMSE was
calculated as for the phantom data.

Results
Phantom heating
Effect of water bath signal level Figure 3 shows temper-
ature maps and errors at peak heat for images in which
the water bath was scaled between 0 and 100% of its true
value. With full data sampling, the water bath signal level
does not affect the temperature map error. However, as
the water bath signal increases to its true value, errors
arise in temperature maps estimated from undersam-
pled data without spatial segmentation. With zero signal
in the water bath, temperature estimates from k-space
everywhere and spatially-segmented methods are simi-
lar. Temperature maps reconstructed using the spatially-
segmented algorithm are also similar in appearance and
RMSE across the range of water bath image scaling lev-
els. The RMSE in the brain/hot spot was improved by
factors of 1.06/0.89 (0% scaling), 1.75/2.97 (25% scal-
ing), 2.81/3.81 (50% scaling), 3.47/4.16 (75% scaling), and
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Fig. 3Water bath scaling results. aMagnitude images and temperature maps reconstructed at peak heat with full 2DFT sampling and 3×
undersampling, with image intensity in the water bath scaled from 0-100% in baseline and dynamic images, prior to synthesizing the undersampled
k-space data. b Root-mean-square error versus water bath signal scaling for undersampled temperature reconstructions

4.85/4.56 (100% scaling) using the spatially-segmented
versus k-space everywhere reconstruction.

Undersampled temperature reconstructions Temper-
ature maps reconstructed from undersampled data during
heating (dynamic 5), peak heat (dynamic 8), and cool-
ing (dynamics 10 and 15) are displayed in Fig. 4. Across
all dynamics of the 3× undersampled 2DFT data, tem-
perature maps have high error when reconstructed using
the k-space everywhere method. With GA radial sam-
pling, 3× undersampled k-space everywhere reconstruc-
tions have much lower in-brain artifact, although errors
are observed near the periphery of the brain. Compared to
2DFT, 2× undersampled spiral k-space everywhere recon-
structions have lower in-brain artifact, though errors are
present throughout the brain that are similar in appear-
ance to the CG reconstruction errors in the magnitude
image (Fig. 2a). All spatially-segmented reconstructions
have low temperature error in the brain.

Figure 5 shows mean and peak temperature change in
the hot spot for fully sampled and undersampled recon-
structions for each trajectory. Mean and peak temperature
change estimates contain errors using the k-space every-
where reconstruction, even with no undersampling, since
unaccounted for signal differences in the water bath
between baseline and dynamic images create errors in
fitting the temperature change model to the data. As
acceleration increases, 2DFT estimates of peak tem-
perature change are slightly overestimated during cool-
down dynamics, and GA radial and spiral estimates of
peak heat are slightly dampened using the proposed
method. In all cases, spatially-segmented reconstructions
tracked the average temperature change in the hot spot
within 0.24 °C. Spatially-segmented 2DFT reconstruc-
tions tracked the peak temperature rise within 0.89 °C at
all factors; GA radial and spiral reconstructions tracked
within 0.94 °C for factors up to 4× (GA radial) and
2.4× (spiral).
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Fig. 4 Phantom heating results. Reconstructed temperature changes
in the brain phantom with 3× undersampled 2DFT and GA radial, and
2× undersampled spiral trajectories

RMSE is lower for spatially-segmented reconstructions
compared to k-space everywhere across all image dynam-
ics in both the brain and hot spot (Fig. 6). On average,
RMSE in the brain/hot spot was reduced by factors of:
5.96/26.77 (2DFT), 2.20/4.91 (GA radial), and 5.65/12.00
(spiral).

MRgFUS thalamotomy
Figures 7–8 show reconstruction results from the in vivo
MRgFUS thermal ablation treatment. At 2×, temper-
ature estimates from SENSE reconstructed images are
similar to fully sampled maps in the hot spot, but con-
tain large errors within the brain. SENSE-reconstructed
images contain significant aliasing artifacts (Fig. 2b) that
degrade temperature map accuracy in the brain. At 3×
and 4×, increased phase artifacts obscure the hot spot and
cause higher temperature error across image dynamics.

Fig. 5Mean and peak temperature changes in the brain phantom.
Mean and peak reconstructed temperature change in the hot spot for
(a) 2DFT, (b) golden angle radial, and (c) spiral trajectories (circles on
x-axis indicate dynamics of displayed maps in Fig. 4)

Artifacts are lower in all the spatially-segmented temper-
ature maps. At all factors, the spatially-segmented recon-
struction tracked the average temperature change within
1.53 °C, and tracked the peak temperature rise within
3.38 °C up to 3×, reflecting slightly higher temperature
error at dynamic 3. Excluding dynamic 3, the peak tem-
perature estimate was within 1.52 °C up to 3×. RMSE in
the brain/hot spot is reduced using the proposed method
compared to SENSE by factors of 1.85/1.75 (2×), 1.75/3.09
(3×), 1.74/1.85 (4×). The total number of iterations and
compute time to reconstruct the temperature map at the
time frame corresponding to the peak of heating was: 42
iterations and 37 s (2×); 86 iterations and 76 s (3×); and
136 iterations and 110 s (4×), without parallelization or
other optimizations for speed.
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Fig. 6 RMSE of reconstructed brain phantom temperature maps.
Root-mean-square error in the phantom brain and temperature hot
spot for (a) 2DFT, (b) golden angle radial, and (c) spiral trajectories
across acceleration factors

Discussion
Summary of main results
Unpredictable water bath motion during brain MRg-
FUS confounds model-based approaches to accelerated
MR temperature mapping, resulting in large temperature
artifacts due to aliasing of water bath signals into the
brain. The proposed spatially-segmented reconstruction
approach was demonstrated to reduce error in undersam-
pled temperature reconstructions of a gel-filled human
skull ablation with a single receive coil, which is the
most common coil configuration currently, and an in
vivo thermal ablation with 8 receive coils, which may
become the most common coil configuration in the near
future. Rather than relying on previously acquired base-
line images, separately reconstructing the image in the
water bath at each treatment dynamic better character-
izes its signal and results in lower temperature error in
the brain.
Phantom heating experiments demonstrated errors in

undersampled temperature reconstruction when using
the baseline water bath image as a reference for the
treatment image, even when water bath signal inten-
sity was reduced to 25% of its actual value. However,

Fig. 7 In vivo MRgFUS treatment results. Reconstructed temperature
change maps in the brain across dynamics from fully sampled and
2-4× undersampled 2DFT data

reconstructing the water bath image at each dynamic and
applying amodel-based temperature reconstruction in the
brain resulted in undersampled temperature maps with
low error using a single receive coil with 2DFT, golden
angle radial, and variable density spiral k-space sampling
trajectories, regardless of the water signal strength. This
indicates that the proposed method could be of value,
even if water is doped to reduce its signal.
In vivo data demonstrated the spatially-segmented

reconstruction approach achieved low temperature error
compared with temperature maps calculated from images
reconstructed with SENSE. Magnitude images estimated
by the k-space hybrid method in the brain (derived from
the input baseline images and corrected for phase drifts)
and CG in the water bath also had lower error than
SENSE reconstructions of the dynamic images (results
not shown). Overall, the segmented method is com-
plementary to parallel reception, since parallel imaging
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Fig. 8 In vivo MRgFUS treatment results. aMean and peak temperature change in the hot spot is plotted for each reconstruction (circles on x-axis
indicate dynamics of displayed maps in Fig. 7) (b) Root-mean-square error in the brain and hot spot for accelerated temperature reconstructions

reconstruction will perform better in the water bath where
the multiple coils have more distinct sensitivities, but less
well in the brain where the sensitivities are similar and
do not provide distinct encoding. By using prior base-
line information in the temperature model, the segmented
method achieves good reconstructions in the brain.

Reconstruction of the image in the water bath
Early attempts to incorporate compressed sensing using
standard wavelet �1 penalties did not significantly improve
temperature reconstruction results. However, it is pos-
sible that using better sparsifying transforms that are
tailored to the water bath could enable the use of a
compressed sensing reconstruction in the water bath.
Improved water bath image reconstruction could poten-
tially reduce computation time, by reducing the number
of iterations required in the reconstruction.

Modifications to reduce MR signal intensity in the water
bath
A possible solution to reduce temperature error associ-
ated with the water bath is to alter the water to have low
MR signal intensity. An acceptable contrast agent would
need to be both biologically safe and acoustically trans-
parent. Although deuterated water (2H2O, or D2O) has
low MR signal, it has been shown to have negative effects
on cell function and structure, suggesting that dosage

and safety effects would need to be investigated before
adopting a D2O solution in the bath [30–32].
Gadolinium (Gd) could be added to the water to

decrease its T1 relaxation time. While Gd is also toxic,
chelated forms such as Gd-diethylenetriaminepentacetate
(Gd-DTPA) have been used safely in patients. However,
high Gd-DTPA concentrations increase the inhomogene-
ity of the local magnetic field, causing signal loss in nearby
pixels [33–35]. While this could be ignored in the water
bath itself, it may impair safety monitoring near the skull
surface, where the risk of tissue overheating is high. Stud-
ies in tissue have shown the Gd-DTPA structure is not
disrupted by the application of ultrasound [36]. However,
investigation of Gd-DTPA in the water bath may be war-
ranted to determine whether there is any negative impact
on the chelate structure, ultrasound wave propagation, or
radiofrequency wave conduction.

Computational considerations
Computation times for the current implementation of
the algorithm were on the order of tens of seconds per
time frame, which is not compatible with real-time clini-
cal use. Real-time clinical use will require more powerful
computing, parallelization, and algorithm innovations to
reduce compute time by approximately a factor of 100, so
that each time frame’s temperature map is fully computed
before data acquisition for the next frame is completed.
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For example, a finely parallelized GPU implementation
could dramatically accelerate and even obviate the use of
non-uniform fast Fourier transforms for non-Cartesian
reconstructions [37]. However, the method could imme-
diately be used for pre-clinical applications, as well as
in-between clinical sonications to obtain the best possible
temperature maps retrospectively for treatment verifica-
tion and guidance.

Other possible embodiments
Although the method presented here was demonstrated
with the k-space hybrid dynamic image model, it should
be compatible with other accelerated temperature map-
ping methods [20]. The segmented approach may also be
useful to suppress temperature artifacts due to intra-scan
water bath motion in fully-sampled acquisitions. Finally, it
may find applications outside the brain in scenarios where
the sonicated target region does not move, but there is
other organ motion distant from the target (such as bowel
motion in uterine fibroid treatments).

Conclusions
While the water bath enables transcranial applications
of MRgFUS by providing acoustic coupling and cooling,
it presents unique challenges in the reconstruction of
temperature maps, particularly from undersampled MRI
data. Applying separate reconstructions to the image in
the brain and water bath results in lower temperature
error when undersampling k-space using single and mul-
tiple receive coils. The spatially-segmented reconstruc-
tion method enables temperature estimation with low
artifacts from undersampled data during brain MRgFUS
treatments, and can be combined with parallel imaging
methods when multiple receive coils are available.
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